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Abstract

We study estimation and inference on causal parameters under finely
stratified rerandomization designs, which use baseline covariates to match
units into groups (e.g. matched pairs), then rerandomize within-group treat-
ment assignments until a balance criterion is satisfied. We show that finely
stratified rerandomization does partially linear regression adjustment “by
design,” providing nonparametric control over the stratified covariates and
linear control over the rerandomized covariates. We introduce several new
forms of rerandomization, allowing for imbalance metrics based on nonlinear
estimators, and proposing a minimax scheme that minimizes the computa-
tional cost of rerandomization subject to a bound on estimation error. While
the asymptotic distribution of GMM estimators under stratified rerandom-
ization is generically non-normal, we show how to restore asymptotic nor-
mality using ex-post linear adjustment tailored to the stratification. We
derive new variance bounds that enable conservative inference on finite pop-
ulation causal parameters, and provide asymptotically exact inference on
their superpopulation counterparts.
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1 Introduction

Stratified randomization is commonly used to increase statistical precision in ex-
perimental research.1 Recent theoretical work (e.g. Bai et al. (2021)) has shown
that fine stratification, which randomizes treatment assignments within small
groups of tightly matched units, makes unadjusted estimators like difference of
means automatically semiparametrically efficient.2 In finite samples, however, the
performance of such designs can deteriorate rapidly with the dimension of the co-
variates used for stratification, due to a curse of dimensionality in matching.3 This
motivates the search for alternative designs that insist upon nonparametric bal-
ance for a few important covariates, but only attempt to balance linear functions
of the remaining variables. In this paper, we study finely stratified rerandomiza-
tion designs, which first tightly match the units into groups using a small set of
important covariates, then rerandomize within-group treatment assignments until
a balance criterion on the remaining covariates is satisfied.

Our first contribution is to derive the asymptotic distribution of generalized
method of moments (GMM) estimators under stratified rerandomization, allowing
for estimation of generic causal parameters defined by moment equalities. We con-
sider both superpopulation and finite population parameters, the latter of which
may be more appropriate for experiments run in a convenience sample (Abadie
et al. (2014)), as is the case for the vast majority of experiments in economics
(Niehaus and Muralidharan (2017)). We introduce novel finite population pa-
rameters, studying a finite population local average treatment effect heterogeneity
parameter in an application to Angrist et al. (2013). As in previous work on reran-
domization (e.g. Li et al. (2018)), the asymptotic distribution of GMM estimators
is an independent sum of a normal and a truncated normal term. We show that,
modulo this truncated term, unadjusted GMM under stratified rerandomization
behaves like semiparametrically adjusted GMM (e.g. Graham (2011)) under an
iid design, with automatic nonparametric control over the stratification covari-
ates and linear control over the rerandomization covariates. Intuitively, stratified
rerandomization implements partially linear regression adjustment “by design.”

Our second contribution is to introduce novel forms of rerandomization based
on nonlinear balance criteria. For example, we allow acceptance or rejection of

1For example, Cytrynbaum (2024a) reports a survey of 50 experimental papers in the AER
and AEJ from 2018-2023, where 57% used some form of stratified randomization.

2See Cytrynbaum (2024b), Armstrong (2022), and Bai et al. (2024b) for more discussion.
3Under regularity conditions, the convergence rate of finite sample variance to asymptotic

variance is O(n−2/(d+1)) for dimension d covariates, see Cytrynbaum (2024b).
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an allocation based on the difference of estimated covariate densities between
treatment and control units. We also study a design that rerandomizes until an
estimated propensity score is approximately constant, forcing the covariates to
have no predictive power for treatment assignments in our realized sample. We
prove that the designs in a general family of nonlinear rerandomization methods
are all asymptotically equivalent to standard rerandomization based on a difference
of covariate means, with an implicit choice of covariates and balance criterion,
which we characterize.

Our third contribution is to study optimization of the balance criterion itself.
We propose a novel minimax scheme that allows the researcher to specify prior
information about the relationship between covariates and outcomes, then reran-
domizes until the worst case covariate imbalance consistent with this prior is small.
We prove that this design minimizes the (asymptotic) computational cost of reran-
domization, subject to a strict bound on estimation error over the set of models
consistent with the prior. If our prior information set contains the truth, then
this design bounds the asymptotic variance of stratified rerandomization within a
small additive factor of the optimal semiparametrically adjusted variance. If the
information set is instead a Wald region estimated from pilot data, we show that
our minimax design bounds the asymptotic variance in the main experiment with
high probability.

Our fourth contribution is to provide simple inference methods for generic
causal parameters under stratified rerandomization designs. To do this, we first
derive the optimal ex-post linear adjustment for GMM estimation, which depends
on the stratification.4 Optimal adjustment makes the asymptotic distribution
of GMM insensitive to the rerandomization acceptance criterion, removing the
truncated normal term from the limiting distribution and restoring asymptotic
normality. We also show that combining rerandomization with ex-post linear
adjustment provides a form of double robustness to covariate imbalances, which
helps explain the strong performance of this method in our simulations. For finite
population causal parameters, the asymptotic variance is generically not identified
(Neyman (1990)). We derive novel identified variance bounds for general finite
population causal parameters, enabling asymptotically conservative inference that
still exploits the efficiency gains from both stratified rerandomization and optimal
adjustment. For superpopulation parameters, we present new inference methods

4This extends recent work on optimal adjustment under pure stratified randomization for
ATE estimation, e.g. see Cytrynbaum (2024a), Bai et al. (2024a), or Liu and Yang (2020).
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that are asymptotically exact.

Finally, we provide simulations and an empirical application to estimating
treatment effect heterogeneity among compliers in Angrist et al. (2013), which
both show the value of adding a rerandomization step to finely stratified designs.
This effect can be seen clearly in Figure 3, which compares stratified rerandom-
ization to stratification plus ex-post adjustment, and Figure 4, which compares
stratified rerandomization to other designs like pure fine stratification. See the
relevant sections below for more detailed discussion.

1.1 Related Literature

This paper builds on the literature on fine stratification in econometrics as well
as the literature on rerandomization in statistics. Stratified randomization has a
long history in statistics, see Cochran (1977) for a survey. Recent work on fine
stratification in econometrics includes Bai et al. (2021), Bai (2022), Cytrynbaum
(2024b), Armstrong (2022), and Bai et al. (2024b). A sample of some recent work
in the statistics literature on rerandomization includes Morgan and Rubin (2012)
and Li et al. (2018), Wang et al. (2021), and Wang and Li (2022). We build on
both of these literatures, studying the consequence of rerandomizing treatments
within data-adaptive fine strata. We show that finely stratified rerandomization
does semiparametric (partially linear) regression adjustment “by design,” providing
nonparametric control over a few important variables and linear control over the
rest.

For our main asymptotic theory (Section 3), the most closely related previous
work is Wang et al. (2021) and Bai et al. (2024b). Wang et al. (2021) study esti-
mation of the sample average treatment effect (SATE) under stratified rerandom-
ization, with quadratic imbalance metrics based on the Mahalanobis norm. We
study rerandomization within data-adaptive fine strata, providing asymptotic the-
ory for generic superpopulation and finite population causal parameters defined by
moment equalities. We also allow for essentially arbitrary rerandomization accep-
tance criteria, not necessarily based on quadratic forms. Bai et al. (2024b) study
estimation of superpopulation parameters defined by moment equalities under
pure stratified randomization, without rerandomization. We extend these results
to stratified rerandomization as well as generic finite population parameters, pro-
viding “SATE-like” versions of the parameters in Bai et al. (2024b).5 In concurrent

5These parameters can be seen as causal versions of the conditional estimand defined in
Abadie et al. (2014).
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work, Wang and Li (2024a) study GMM estimation of univariate superpopulation
parameters under stratified rerandomization with fixed, discrete strata. We study
significantly more general forms of stratification and rerandomization criteria than
considered in their work, allowing for both finite and superpopulation parameters
of arbitrary dimension and fine stratification with continuous covariates.

For nonlinear rerandomization (Section 4), the closest related results are Ding
and Zhao (2024) and Li et al. (2021). Ding and Zhao (2024) rerandomize based on
the p-value of a logistic regression coefficient, while we rerandomize until a gen-
eral smooth propensity estimate is close to constant in L2 norm. Li et al. (2021)
simulate a density based rerandomization design, but provide limited theoretical
results. To the best of our knowledge, we present the first asymptotic theory for
rerandomization based on the difference of nonlinear (e.g. density) estimates. For
acceptance region optimization (Section 5), the closest related results are Schindl
and Branson (2024), who study the optimal choice of norm for quadratic reran-
domization, while Liu et al. (2023) chooses an optimal quadratic rerandomization
design using a Bayesian criterion, in both cases for rerandomization without strat-
ification. We propose a novel minimax approach that accepts or rejects based on
the value of a convex penalty function, tailored to prior information provided by
the researcher or estimated from a pilot.

Our work on optimal adjustment (Section 6) extends recent work on adjust-
ment for stratified designs, e.g. Liu and Yang (2020), Cytrynbaum (2024a), Bai
et al. (2024a), to stratified rerandomization and GMM parameters. Finally our
work on inference under data-adaptive fine stratification (Section 7) builds on
previous work by Abadie and Imbens (2008), Bai et al. (2021), and Cytrynbaum
(2024b). Other recent work that has considered variance bounds for finite popula-
tion causal parameters includes Aronow et al. (2014), Fogarty (2018), Ding et al.
(2019), Abadie et al. (2020), and Xu (2021).

2 Framework and Designs

Consider data Wi = (Ri, Si(1), Si(0)) with (Wi)
n
i=1

iid∼F . The Si(d) ∈ RdS denote
potential outcome vectors for a binary treatment d ∈ {0, 1}, while Ri denote
other pre-treatment variables, such as covariates. For treatment assignments Di ∈
{0, 1}, the realized outcome Si = Si(Di) = DiSi(1)+(1−Di)Si(0). In what follows,
for any array (ai)

n
i=1 we denote En[ai] = n−1

∑n
i=1 ai, with ā1 = En[ai|Di = 1] =

En[aiDi]/En[Di] and similarly ā0 = En[ai|Di = 0]. Next, we define stratified
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rerandomization designs.

Definition 2.1 (Stratified Rerandomization). Let treatment proportions p = l/k

and suppose that n is divisible by k for notational simplicity.

(1) (Stratification). Partition the experimental units into n/k disjoint groups
(strata) s with {1, . . . , n} =

⋃
s s disjointly and |s| = k. Let ψ = ψ(R) with

ψ ∈ Rdψ denote a vector of stratification variables, which may be continuous
or discrete. Suppose the groups satisfy the matching condition6

1

n

∑
s

∑
i,j∈s

|ψi − ψj|22 = op(1). (2.1)

Require that the groups only depend on the stratification variables ψ1:n and
data-independent randomness πn, so that s = s(ψ1:n, πn) for each s.

(2) (Randomization). Independently for each |s| = k, draw treatment variables
(Di)i∈s by setting Di = 1 for exactly l out of k units, uniformly at random.

(3) (Check Balance). For rerandomization covariates h = h(R), consider an
imbalance metric In =

√
n(h̄1 − h̄0) + op(1).7 For an acceptance region

A ⊆ Rdh , check if the balance criterion In ∈ A is satisfied. If so, accept
D1:n. If not, repeat from the beginning of (2).

Intuitively, steps (1) and (2) describe a data-driven “matched k-tuples” design,
while step (3) rerandomizes within k-tuples until the balance criterion is satisfied.
Equation 2.1 is a tight-matching condition, requiring that the groups are clustered
locally in ψ space. Cytrynbaum (2024b) provides algorithms to match units into
groups that satisfy this condition for any fixed k.

Example 2.2 (Pure Stratification). Stratification without rerandomization can
be obtained by setting A = Rdh in Definition 2.1. Treatment effect estimation
under such designs was studied in Bai (2022), Cytrynbaum (2024b), and Bai et al.
(2024b). Definition 2.1 allows for fine stratification (also known as matched k-
tuples), with the number of data-dependent groups s = s(ψ1:n, πn) growing with
n. It also allows for coarse stratification with strata x ∈ {1, . . . ,m} and fixed
m, studied e.g. in Bugni et al. (2018). This can be obtained in our framework by
setting ψ = x and matching units into groups s at random within each {i : xi = k}.

6The matching condition in Equation 2.1 was introduced by Bai et al. (2021) for matched
pairs randomization (k = 2). See Bai (2022) and Cytrynbaum (2024b) for generalizations.

7In particular, we require that In =
√
n(h̄1 − h̄0) + op(1) under the law induced by “pure”

stratified randomization, the design in steps (1) and (2) only, studied e.g. in Cytrynbaum (2024b).
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Example 2.3 (Complete Randomization). For p = l/k, we say that D1:n are
completely randomized with probability p if P (D1:n = d1:n) = 1/

(
n
np

)
for all d1:n

with
∑

i di = np.8 Equivalently, complete randomization is coarse stratification
with m = 1 above. This can be obtained by setting ψ = 1 and A = Rdh in
Definition 2.1, matching units into groups at random.

Next, we discuss a convenient rerandomization scheme that allows the re-
searcher to select the approximate number of draws until acceptance.

Example 2.4 (Mahalanobis Rerandomization). Consider matched k-tuples reran-
domization as in Equation 2.1. Define within-tuple demeaned covariates X̌i =

Xi− k−1
∑

j∈s(i)Xj and set Σn = Var(D)−1 k
k−1

En[X̌iX̌
′
i]. Consider rerandomizing

until
n(X̄1 − X̄0)

′Σ−1
n (X̄1 − X̄0) ≤ ϵ2. (2.2)

This scheme was studied e.g. in Wang et al. (2021) for the case without data-
adaptive strata. Equation 2.2 is equivalent to In ∈ A for In = Σ

−1/2
n

√
n(X̄1− X̄0)

and A = {x : |x|2 ≤ ϵ}. Work in Cytrynbaum (2024a) implies that under matched
k-tuples randomization, Σn

p→ Σ = Var(D)−1E[Var(X|ψ)], so In =
√
n(h̄1− h̄0)+

op(1) for h = Σ−1/2X. Then this design satisfies Definition 2.1. One can show
that n(X̄1 − X̄0)

′Σ−1
n (X̄1 − X̄0) ⇒ χ2

r for r = dim(X) under pure stratification.9

If ϵ(α) is chosen as the α quantile of χ2
r, P (χ2

r ≤ ϵ(α)2) = α, then P (In ∈ A) =

α + o(1). Setting α = 1/m, gives approximately m expected rerandomizations
until acceptance for large enough n.

Mahalanobis rerandomization uses a convenient choice of acceptance criterion,
but the variance normalization and implicit acceptance region in Equation 2.4 are
not generally efficient for estimating causal parameters. We provide alternative
designs that optimize the shape of acceptance region A in Section 5 below.

Causal Estimands. Next, we introduce a generic family of causal estimands
defined by moment equalities. Let g(D,R, S, θ) ∈ Rdg be a score function for gener-
alized method of moments (GMM) estimation. Recall W = (R, S(1), S(0)) and for
D|W ∼ Bernoulli(p) define ϕ(W, θ) = E[g(D,R, S, θ)|W ] = pg(1, R, S(1), θ)+(1−
p)g(0, R, S(0), θ). By construction, we haveE[ϕ(W, θ)] = 0 ⇐⇒ E[g(D,R, S, θ)] =

0. The function ϕ(W, θ) provides a convenient parameterization to define our
paired finite population and superpopulation causal estimands.

8For notational simplicity, we may assume that n = lk for some l ∈ N.
9For instance, this follows from Lemma A.8 in Cytrynbaum (2024a) and Corollary 3.6 below.

7



Definition 2.5 (Causal Estimands). The superpopulation estimand θ0 is the
unique solution to E[ϕ(W, θ)] = 0. The finite population estimand θn is the unique
solution to En[ϕ(Wi, θ)] = 0.

In what follows, we study GMM estimation of both θ0 and θn under stratified
rerandomization designs, showing an asymptotic equivalence between stratified
rerandomization and partially linear covariate adjustment. In particular, this
framework allows us to introduce several useful finite population estimands θn
that do not appear to have been previously considered in the literature, such
as Example 2.7 below. The estimand θn may be a more appropriate target for
experiments run in a convenience sample, as is the case for the vast majority
of experiments reported in the economics literature (Niehaus and Muralidharan
(2017)). Inference on θn, provided in Section 7, is generically more powerful than
for θ0, since we only have to account for estimation uncertainty due to random
assignment, without extra variability from sampling into the experiment. Note
GMM estimation of θ0 under pure stratification was studied in Bai et al. (2024b).

Example 2.6 (ATE and SATE). Define the Horvitz-Thompson weights H = D−p
p−p2

and let g(D, Y, θ) = HY − θ, so that ϕ(W, θ) = E[HY |W ] − θ = Y (1) − Y (0) −
θ. Then θ0 = E[Y (1) − Y (0)] = ATE, the average treatment effect, and θn =

En[Yi(1)− Yi(0)] = SATE, the sample average treatment effect.

Consider a setting where the researcher wants to estimate a parametric model
of treatment effect heterogeneity in an experiment with noncompliance and ran-
domized binary instrument Z. In the next example, we define finite population
and superpopulation local average treatment effect (LATE) heterogeneity param-
eters, applying them in our empirical application to Angrist et al. (2013) below.

Example 2.7 (LATE Heterogeneity). Let D(z) be potential treatments for a
binary instrument z ∈ {0, 1}. Let Y (d) be the potential outcomes, with realized
outcome Y = Y (D(Z)). Suppose D(1) ≥ D(0), and define compliance indicator
C = 1(D(1) > D(0)), assuming E[C] > 0. Imbens and Angrist (1994) define the
LATE = E[Y (1)− Y (0)|C = 1]. Let H = (Z − p)/(p− p2) and consider the score
function g(Z,D, Y,X, θ) = (HY −HD · f(X, θ))∇θf(X, θ). A calculation shows

ϕ(W, θ) = E[g(Z,D, Y,X, θ)|W ] = C · (Y (1)− Y (0)− f(X, θ))∇θf(X, θ).

The moment condition E[ϕ(W, θ)] = 0 is the FOC of a treatment effect prediction
problem in the complier population C = 1. In particular, for τ ≡ Y (1)−Y (0), the
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parameter θ0 is the best parametric predictor θ0 = argminθ E[(τ−f(X, θ))2|C = 1]

of treatment effects for compliers.10 Specializing to f(X, θ) = X ′θ, this is the best
linear predictor (BLP) of treatment effect heterogeneity among the compliers θ0 =
argminθ E[(τ −X ′θ)2|C = 1], while f(X, θ) = θ recovers the LATE = E[τ |C = 1].
Setting En[ϕ(Wi, θ)] = 0, the corresponding finite population parameter is

θn = argmin
θ

En[(τi − f(Xi, θ))
2|Ci = 1]. (2.3)

We can also specialize to f(X, θ) = X ′θ for a finite population version of the BLP
of LATE. The finite population LATE was studied in Ren (2023) under complete
randomization, but the more general heterogeneity parameters here appear to be
novel. We consider both θ0 and θn when studying treatment effect heterogeneity
among compliers in the empirical application to Angrist et al. (2013) in Section 9.

GMM Estimation. For positive-definite weighting matrix Mn ∈ Rdg×dg with
Mn

p→ M ≻ 0 and sample moment ĝ(θ) ≡ En[g(Di, Ri, Si, θ)], the GMM estima-
tor11 is

θ̂ = argmin
θ∈Θ

ĝ(θ)′M ′
nĝ(θ). (2.4)

We are mostly interested in the exactly identified case, where θ̂ solves ĝ(θ̂) = 0. In
what follows, we study the properties of generalized method of moments (GMM)
estimation of the causal parameters θ0 and θn under stratified rerandomization.

3 Asymptotics for GMM Estimation

In this section, we characterize the asymptotic distribution of the GMM estimator
θ̂ under the stratified rerandomization designs in Definition 2.1. We show that
the asymptotic variance of θ̂ is proportional to the residuals of a partially linear
regression model, up to a remainder term due to slackness in the rerandomization
criterion. In this sense, stratified rerandomization does partially linear regression
adjustment “by design.” First, we state some technical conditions that are needed
for the following results.

Assumption 3.1 (Acceptance Region). Suppose A ⊆ Rdh has non-empty interior
and Leb(∂A) = 0,12 and require E[Var(h|ψ)] ≻ 0 and E[|ψ|22 + |h|22] <∞.

10For example, if Y is binary then Y (1) − Y (0) ∈ {−1, 0, 1}, so the link function model
f(X, θ) = 2L(X ′θ)− 1 for L = Logit may be appropriate.

11In our examples, we will mainly be concerned with the exactly identified case. However, the
theory for the over identified case is almost identical, so we include this as well.

12Note that ∂A denotes the boundary of A, the limit points of both A and Ac.
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Next we state the technical conditions needed for GMM estimation. Define the
matrix G = E[(∂/∂θ′)ϕ(W, θ)]|θ=θ0 ∈ Rdg×dθ and let gd(W, θ) = g(d,R, S(d), θ) for
d ∈ {0, 1}. Recall the Frobenius norm |B|2F =

∑
ij B

2
ij for any matrix B.

Assumption 3.2 (GMM). The following conditions hold for d ∈ {0, 1}:

(a) (Identification). The matrix G is full rank, and g0(θ) = 0 iff θ = θ0.

(b) We have E[gd(W, θ0)
2] < ∞ and E[supθ∈Θ |gd(W, θ)|2] < ∞. Also θ →

gd(W, θ) is continuous almost surely, and Θ is compact.13

(c) There exists a neighborhood θ0 ∈ U ⊆ Θ such that Gd(W, θ) ≡ ∂/∂θ′gd(W, θ)

exists and is continuous. Also E[supθ∈U |∂/∂θ′gd(W, θ)|F ] <∞.

Compactness could likely be relaxed using concavity assumptions or a VC class
condition, but we do not pursue this here. In what follows it will be conceptually
useful to reparameterize the score function.

Sampling and Assignment Expansion. Recall ϕ(W, θ) = E[g(D,R, S, θ)|W ]

for W = (R, S(1), S(0)). Define a(W, θ) ≡ Var(D)(g1(W, θ) − g0(W, θ)), which
we refer to as the “assignment function.” For Horvitz-Thompson weights H =

(D − p)/(p− p2), a calculation shows we can expand

g(D,R, S, θ) = ϕ(W, θ) +Ha(W, θ). (3.1)

Our results below show that a(W, θ) parameterizes estimator variance due to ran-
dom assignment, while ϕ(W, θ) parameterizes the variance due to random sampling
for the superpopulation estimand θ0.

Example 3.3 (ATE and SATE). Continuing Example 2.6 above, define Ȳ =

(1− p)Y (1) + pY (0). This is a convex combination that summarizes both poten-
tial outcomes, which we view as the unit’s “outcome level.” Then for the score
g(D, Y, θ) = HY − θ, we have a(W, θ) = Var(D)(Y (1)/p− (−Y (0)/(1− p))) = Ȳ .
Another simple calculation14 shows that for difference of means θ̂ = En[HiYi] and
estimands θn = SATE, θ0 = ATE

θ̂ − θ0 = (θ̂ − θn) + (θn − θ0) = En[Hia(Wi)] + En[ϕ(Wi, θ0)]

= (En[Ȳi|Di = 1]− En[Ȳi|Di = 0]) + (En[Yi(1)− Yi(0)]− θ0)

13We can formally resolve measurability issues with the sup expressions by either (1) explic-
itly working with outer probability (e.g. van der Vaart and Wellner (1996)) or (2) requiring
that {gd(·, θ), θ ∈ Θ} is universally separable for d = 0, 1 (Pollard (1984), p.38). To focus on
the practical design issues, we avoid this formalism, implicitly assuming that all quantities are
appropriately measurable.

14For stratified designs En[Di] = p, so En[HiYi] = Ȳ1 − Ȳ0. This is not true for iid designs.
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The assignment term En[Hia(Wi)] from Equation 3.1 isolates the estimation error
due to chance imbalances in the outcome levels Ȳi between treatment and control
during random assignment. By contrast, the term En[ϕ(Wi, θ0)] for sampling
function ϕ(W, θ) = Y (1) − Y (0) − θ isolates the estimation error due to random
sampling of heterogeneous units.

3.1 Finite Population Estimand

Our first theorem studies GMM estimation of the finite population estimand
θn, which solves En[ϕ(Wi, θn)] = 0. We extend these results to θ0 in Corol-
lary 3.7 below. To state the theorem, define the GMM linearization matrix
Π = −(G′MG)−1G′M ∈ Rdθ×dg . Note that in the exactly identified case dg = dθ,
we just have Π = −G−1. We also denote the constant vD = Var(D) = p− p2.

Before stating the main result, we first derive the influence function for GMM
estimation of θn under stratified rerandomization.

Lemma 3.4 (Linearization). Suppose D1:n as in Definition 2.1 and require As-
sumption 3.1, 3.2. Then

√
n(θ̂ − θn) =

√
nEn[HiΠa(Wi, θ0)] + op(1).

Lemma 3.4 generalizes Example 3.3 above, showing that

θ̂ − θn = Π(En[a(Wi, θ0)|Di = 1]− En[a(Wi, θ0)|Di = 0]) + op(n
−1/2).

This implies that the errors in estimating any finite population GMM parameter
θn are driven by random imbalances in the assignment function a(Wi, θ0) between
treatment and control units, at least to first-order. Our main theorem shows that,
by balancing ψ and h ex-ante, stratified rerandomization reduces these imbalances,
improving precision.

Theorem 3.5 (GMM). Suppose D1:n as in Definition 2.1. Require Assumption
3.1, 3.2. Then

√
n(θ̂ − θn)|W1:n ⇒ N (0, Va) +RA, independent RV’s with

Va = min
γ∈Rdh×dθ

v−1
D E[Var(Πa(W, θ0)− γ′h|ψ)]. (3.2)

Let γ0 be optimal in Equation 3.2. The term RA is a truncated Gaussian vector

RA ∼ γ′0Zh |Zh ∈ A, Zh ∼ N (0, v−1
D E[Var(h|ψ)]). (3.3)

Note the variance Va is a matrix Va ∈ Rdθ×dθ , so the minimum should be inter-
preted in the positive semidefinite sense, V (γ0) = minγ V (γ) if V (γ0) ⪯ V (γ) for
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all γ ∈ Rdh×dθ . Theorem 3.5 shows that
√
n(θ̂−θn) is asymptotically distributed as

an independent sum of a normal N (0, Va) and truncated normal vector RA. Both
terms only depend on the “assignment” influence function component Πa(W, θ0).

Partially Linear Adjustment. Let L(ψ) = Ldθ2 (ψ) be the dθ-fold Cartesian
product of L2(ψ), the space of square-integrable functions. Then the variance
Va in Theorem 3.5 is can be written in terms of the residuals of the assignment
function Πa(W, θ0) in a partially linear regression on ψ and h:

Va = min
γ∈Rdh×dθ
t∈L(ψ)

v−1
D Var (Πa(W, θ0)− γ′h− t(ψ)) . (3.4)

This shows stratified rerandomization does partially linear regression adjustment
“by design,” providing nonparametric control over ψ and linear control over h.

Residual Imbalance. The truncated Gaussian RA ∼ γ′0Zh |Zh ∈ A arises
from residual covariate imbalances due to slackness in the acceptance criterion,
since A ̸= {0}. If A is symmetric about zero, i.e. x ∈ A iff −x ∈ A, then
E[RA] = 0, so the GMM estimator θ̂ is first-order unbiased, as usual. In principle,
RA can be made negligible relative to N (0, Va) in large enough samples by choosing
very small A. For example, if A = B(0, ϵ) then RB(0,ϵ) ∼ {γ′0Zh | |Zh|2 ≤ ϵ} p→ 0

as ϵ → 0. However, in finite samples this may be computationally infeasible and
could even invalidate our first-order asymptotic approximation.15 We develop a
minimax criterion to choose an efficient region A in Section 5 below.

To isolate the precision gains due to rerandomization, the following corollary
specializes Theorem 3.5 to the case of stratification without rerandomization (A =

Rdh), as well as complete randomization, defined in Examples 2.2 and 2.3.

Corollary 3.6 (Pure Stratification). Suppose D1:n as in Definition 2.1 with A =

Rdh. Require Assumption 3.1. Then
√
n(θ̂ − θn)|W1:n ⇒ N (0, Va) with Va =

v−1
D E[Var(Πa(W, θ0)|ψ)]. In particular, if D1:n is completely randomized ψ = 1,

then Va = v−1
D Var(Πa(W, θ0)).

Corollary 3.6 shows that fine stratification reduces the variance of GMM es-
timation of θn to Va = v−1

D E[Var(Πa(W, θ0)|ψ)] ≤ v−1
D Var(Πa(W, θ0)), a non-

parametric improvement. Rerandomization as in Definition 2.1 provides a further
linear variance reduction to Va = minγ∈Rdh×dθ E[Var(Πa(W, θ0) − γ′h|ψ)], up to
the residual imbalance term RA.

15See Wang and Li (2022) for a detailed analysis of complete rerandomization, where ϵn can
change with sample size.
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3.2 Superpopulation Estimand

This section extends the asymptotics above to the superpopulation estimand θ0

solving E[ϕ(W, θ0)] = 0. We show that by targeting θ0 we incur additional sam-
pling variance that is invariant to the distribution of treatment assignments D1:n.

Corollary 3.7 (Superpopulation Estimand). Suppose D1:n is as in Definition 2.1.
Require Assumption 3.1, 3.2.

(a) We have
√
n(θ̂ − θ0) ⇒ N (0, Vϕ) + N (0, Va) + RA, independent RV’s with

Vϕ = Var(Πϕ(W, θ0)) and Va, RA exactly as in Theorem 3.5.

(b) (Pure Stratification). If A = Rdh, this is
√
n(θ̂ − θ0) ⇒ N (0, V ) with

V = Var(Πϕ(W, θ0)) + v−1
D E[Var(Πa(W, θ0)|ψ)].

The corollary shows that targeting θ0 instead of θn adds an extra independent
N (0, Vϕ) term to the asymptotic distribution. The variance Vϕ arises due to iid
random sampling of the sampling function Πϕ(W, θ0). Notice that stratified reran-
domization only reduces the variance due to imbalances in the assignment function
Πa(W, θ0), while the variance due to sampling Πϕ(W, θ0) is irreducible. In this
sense, the statistical consequences of different designs and adjustment strategies
all happen at the level of the finite population estimand θn, while targeting the
superpopulation θ0 just adds extra sampling noise. Note that for pure stratifica-
tion, Bai et al. (2024b) were the first to derive an analogue of part (b) of Corollary
3.7, under different GMM regularity conditions than we use here.16

Example 3.8 (SATE). Theorem 3.5 and Corollary 3.7 show
√
n(θ̂−SATE)|W1:n ⇒

N (0, Va) +RA and
√
n(θ̂ − ATE) ⇒ N (0, Vϕ + Va) +RA with

Vϕ = Var(Y (1)− Y (0)) Va = min
γ∈Rdh

v−1
D E[Var(Ȳ − γ′h|ψ)]. (3.5)

The term Vϕ reflects sampling variance due to treatment effect heterogeneity. The
term Va is the variance due to random assignment, caused by random imbalances
in outcome levels Ȳ between Di = 1 and Di = 0. Balanced randomization and
adjustment can be used to reduce Va, while Vϕ is an irreducible sampling variance.

Remark 3.9. Wang et al. (2021) study SATE estimation under stratified reran-
domization in the sequence of finite populations framework. By contrast, here

16In particular, Bai et al. (2024b) allow for non-smooth GMM scores and impose a VC di-
mension condition on gd(W, θ). We restrict to the smooth case, using compactness of Θ to avoid
entropy conditions.
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we allow for data-adaptive strata s = s(ψ1:n, πn), endogenizing the process of fine
stratification. Using the tight-matching condition 2.1, we are able to derive a sim-
ple closed form for the asymptotic variance, providing a novel connection between
stratified rerandomization and partially linear regression adjustment.

Example 3.10 (CATE). Specializing Example 2.7, consider estimating the best
linear predictor of treatment effect heterogeneity in an experiment with perfect
compliance. We can use the slightly simpler score g(D,X, Y, θ) = (HY −X ′θ)X.
For τ = Y (1)− Y (0) we have ϕ(W, θ) = (τ −X ′θ)X, so the parameters θn, θ0 are

θn = argmin
θ

En[(τi −X ′
iθ)

2], θ0 = argmin
θ

E[(τ −X ′θ)2].

The parameter θn was studied in Ding et al. (2019) under complete randomization.
A simple calculation shows that assignment function a(W, θ0) = Ȳ X and Π =

E[XX ′]−1. Then for residual e = τ −X ′θ0, the variances in Corollary 3.7 are

Vϕ = Var(ΠeX), Va = min
γ∈Rdh×dx

v−1
D E[Var(ΠȲ X − γ′h|ψ)].

Efficient Design. The expression for Va shows that to precisely estimate hetero-
geneity parameters θn and θ0, it is important to include not only variables that
predict outcome levels Ȳ in ψ and h, but also their interactions with the desired
heterogeneity variable X. We consider such interacted designs in our simulations
and empirical application to Angrist et al. (2013) below.

4 Nonlinear Rerandomization

In this section, we introduce several novel “nonlinear” rerandomization criteria,
proving that in many cases such designs are first-order equivalent to linear reran-
domization (Definition 2.1), with an implicit choice of covariates h and acceptance
region A. This shows that our asymptotics and inference methods apply to a larger
class of asymptotically linear rerandomization schemes.

4.1 GMM Rerandomization

First, we generalize the imbalance metric In in Definition 2.1, allowing rejection
of D1:n based on potentially nonlinear features of the in-sample distribution of
treatments and covariates (Di, Xi)

n
i=1. Let m(Xi, β) be a GMM score function,

separate from the score g(D,R, S) defining the estimands above. We can define a

14



large class of designs by stratifying and rerandomizing until
√
n(β̂1 − β̂0) ≈ 0 for

within-arm GMM estimators

En[Dim(Xi, β̂1)] = 0, En[(1−Di)m(Xi, β̂0)] = 0. (4.1)

Definition 4.1 (GMM Rerandomization). Define Imn =
√
n(β̂1 − β̂0) as above,

where m(X, β) is a score satisfying Assumption 3.2. Suppose dβ = dm (exact
identification) and let A be a symmetric acceptance region. Do the following: (1)
form groups as in Definition 2.1. (2) Draw D1:n by stratified randomization and
estimate Equation 4.1. (3) If imbalance Imn =

√
n(β̂1 − β̂0) ∈ A, accept D1:n.

Otherwise, repeat from (2).

If m(Xi, β) = Xi − β, then β̂d = X̄d for d = 0, 1 and Imn = In, so linear
rerandomization is a special case. However, Definition 4.1 also allows for novel
designs, such as rerandomizing until the estimated densities of Xi|Di = 1 among
treated and Xi|Di = 0 among control are similar. To the best of our knowledge,
we provide the first asymptotic theory for such a design.

Example 4.2 (Density Rerandomization). Let f(X, β) be a possibly misspecified
parametric likelihood. Draw D1:n and form MLE β̂1 ∈ argmaxβ En[Di log f(Xi, β)]

and β̂0 ∈ argmaxβ En[(1−Di) log f(Xi, β)], rerandomizing until the estimated pa-
rameters

√
n|β̂1− β̂0|2 ≤ ϵ. Under regularity conditions,17 β̂d are GMM estimators

with score m(Xi, β) = ∇β log f(Xi, β), so this procedure is a GMM rerandomiza-
tion with acceptance region A = {x : |x|2 ≤ ϵ}.

Let β∗ be the unique solution to E[m(X, β∗)] = 0 and define the JacobianGm =

E[(∂/∂β′)m(Xi, β
∗)]. Our next result shows that GMM rerandomization with

acceptance criterion Imn ∈ A is equivalent to linear rerandomization (Definition
2.1) with an implicit choice of rerandomization covariates hi = m∗

i ≡ m(Xi, β
∗)

and linearly transformed acceptance region.

Theorem 4.3 (GMM Rerandomization). Suppose D1:n is as in Definition 4.1 and
Assumption 3.2 holds. Then

√
n(θ̂ − θn)|W1:n ⇒ N (0, Va) +R, independent RV’s

with
Va = min

γ∈Rdm×dθ
v−1
D E[Var(Πa(W, θ0)− γ′m∗

i |ψ)]. (4.2)

The residual R ∼ [γ′0Zm |Zm ∈ GmA] for Zm ∼ N (0, v−1
D E[Var(m∗

i |ψ)]), where γ0
is optimal in Equation 4.2.

17For example, if β → log f(X,β) is a.s. strictly concave, the key identification condition in
Assumption 3.2 will be satisfied.
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Theorem 4.3 shows that by rerandomizing until
√
n(β̂1− β̂0) ∈ A, we implicitly

balance the influence function −G−1
m m(Xi, β

∗) for the difference of GMM estima-
tors above. In particular, this shows that all GMM rerandomization designs are
first-order equivalent to linear rerandomization (Definition 2.1) for some choice of
hi and acceptance region A.

For completeness, we provide a feasible linear rerandomization that exactly
mimics the behavior in Theorem 4.3. To do so, let ĥi = m(Xi, β̂) for En[m(Xi, β̂)] =

0 solving the pooled GMM problem, and rerandomize until
√
n(En[ĥi|Di = 1] −

En[ĥi|Di = 0]) ∈ ĜmA for Ĝm
p→ Gm.

Corollary 4.4 (Feasible Equivalence). Suppose Assumption 3.1, 3.2 and let m(X, β)

as in Definition 4.1. Let D1:n be rerandomized as in Definition 2.1 with ĥi =

m(Xi, β̂) and acceptance region ĜmA. Then
√
n(θ̂ − θn)|W1:n ⇒ N (0, Va) + R,

with both variables identical to those in Theorem 4.3.

One consequence of Theorem 4.3 is that density based rerandomization for
likelihood in an exponential family with sufficient statistic r(Xi) is asymptotically
equivalent to linear rerandomization setting hi = r(Xi).

Example 4.5 (Density Rerandomization). Define f(x, β) = exp(β′r(x) − t(β)),
with sufficient statisitc r(x) for some measure ν on x ∈ X . If the (rj(x))

k
j=1 are

ν-a.s. linearly independent, then β → log f(x, β) is strictly concave for all x.18

Then the score m(X, β) = ∇β log f(X, β) has a unique solution E[m(X, β∗)] = 0,
showing that quasi-MLE in this family can be formulated as a GMM problem. By
Theorem 4.3, density rerandomization using f(x, β) is asymptotically equivalent
to linear rerandomization with h∗i = ∇β log f(Xi, β

∗) = r(Xi) − ∇βt(β
∗). Since

En[∇βt(β
∗)|Di = 1]−En[∇βt(β

∗)|Di = 0] = 0, this design is equivalent to setting
hi = r(Xi). For example, if x ∈ {±1}k are binary variables, consider density-based
rerandomization using the graphical model19

f(x, β) = exp

(∑
j

xjβj +
∑
j<l

xjxlβjl − t(β)

)
.

The parameters βjl model correlation between the binary variables xj and xl.
For x ∈ {±1}k with k large, this is a tractable alternative to nonparametricallly

18This holds since the log partition function t(β) = log
∫
X exp(β′r(x))dν(x) is strictly convex

for β s.t. t(β) < ∞ in this case. See e.g. Wainwright and Jordan (2008) Chapter 3 for an
introduction to the properties of the log partition function t(β).

19This is known as the Ising model. Categorical variables with l ≥ 2 levels and higher inter-
actions can be added. See Wainwright and Jordan (2008) for MLE algorithms in this family.
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modeling the full joint distribution, or e.g. stratifying on all 2k cells. Corollary 4.4
shows that rerandomizing based on the difference of quasi-MLE density estimates
in this family20 is asymptotically equivalent to a simpler linear rerandomization
design with h = r(x) = ((xj)j, (xjxl)j<l).

4.2 Propensity Score Rerandomization

To motivate a propensity score based rerandomization procedure, note that de-
spite E[Di|Xi] = p for all units, in finite samples the realized propensity p̂(B) =

En[Di|Xi ∈ B] may significantly diverge from p in certain regions B ⊆ RdX of
the covariate space. This implies that covariates Xi are predictive of treatment
assignments Di ex-post, a form of “in-sample confounding,” which vanishes as
n → ∞ but affects precision. To prevent this, we could reject allocations for
which |p̂(B) − p| > ϵ for some collection of sets B. To make this idea tractable,
set X = (1, h) and consider a propensity model p(X, β) = L(X ′β) for smooth link
function L (e.g. Logit), and define the MLE estimator

β̂ ∈ argmax
β∈Rdβ

En[Di logL(X
′
iβ) + (1−Di) log(1− L(X ′

iβ))]. (4.3)

The average gap between the realized and ex-ante propensity score can be mea-
sured by

Jn = nEn[(p− L(X ′
iβ̂))

2]. (4.4)

Intuitively, if Jn is large, then the covariates X are predictive of treatment status
in some parts of the covariate space. To avoid this, we propose rerandomizing
until the imbalance metric Jn is below a threshold:

Definition 4.6 (Propensity Rerandomization). Do the following: (1) form groups
as in Definition 2.1. (2) Draw D1:n by stratified randomization and estimate the
propensity model in Equation 4.3. (3) If imbalance Jn ≤ ϵ2, accept. Otherwise,
repeat from (2).

This design is illustrated in Figure 1. Note that the covariate distribution is
approximately balanced between D = 1 and D = 0 after acceptance. Our next
result shows that propensity rerandomization as in Definition 4.6 is equivalent
to a simpler linear rerandomization design, with an implicit choice of ellipsoidal

20This is well-motivated when ψ is expected to be more important than (xj)j . We don’t want
to stratify on both, since this could radically decrease match quality on ψ.
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Figure 1: Propensity rerandomization (Definition 4.6) with p = 1/2 for Z ∼
Unif[0, 1] and X = B(Z) a B-spline basis. LHS: D1:n and estimated propensity
with p̂(Z) ≪ 1/2, for Z ∈ [0.4, 0.9], showing imbalance. RHS: Accepted allocation
D1:n with Jn ≤ ϵ2.

acceptance region. We require some extra regularity conditions on the link function
L, which for brevity we state in Appendix C.3.

Theorem 4.7 (Propensity Rerandomization). Suppose D1:n is as in Definition
4.6. Require Assumptions 3.2, C.3. Then

√
n(θ̂ − θn)|W1:n ⇒ N (0, Va) +R.

Va = min
γ∈Rdh×dθ

v−1
D E[Var(Πa(W, θ0)− γ′h|ψ)].

The residual R ∼ γ′0Zh |Z ′
hVar(h)

−1Zh ≤ ϵv−2
D for Zh ∼ N (0, v−1

D E[Var(h|ψ)])
and γ0 optimal in the equation above.

Theorem 4.7 shows that for any sufficiently regular link function,21 propensity
rerandomization is asymptotically equivalent to Mahalanobis rerandomization in
Example 2.4, with acceptance criterion n(h̄1 − h̄0)

′Varn(hi)
−1(h̄1 − h̄0) ≤ ϵv−2

D .
Equivalently, propensity rerandomization behaves like linear rerandomization with
In =

√
n(h̄1 − h̄0) and ellipsoidal acceptance region A = Var(h)1/2B(0, ϵv−2

D ).22

This section showed that a large family rerandomization methods based on
nonlinear estimation were asymptotically equivalent to standard linear rerandom-
ization. To obtain new designs with better first-order properties, we may require
more stringent acceptance criteria, such as rerandomizing based on the magnitude
of a nonparametric two-sample test statistic. We leave such difficult extensions to
future work.

21Theorem 4.7 uses MLE estimation of β̂, though we conjecture the result would be identical
for inverse probability tilting (Graham (2012)) or tailored loss function (Zhao (2019)) estimation.

22A related result was found by Ding and Zhao (2024), who study rerandomizing until the
p-value of a logistic regression coefficient is above a threshold.
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5 Optimizing Acceptance Regions

In this section, we study efficient choice of the acceptance region A ⊆ Rdh . We
propose a minimax rerandomization scheme and show that it minimizes the com-
putational cost of rerandomization subject to a strict lower bound on statistical
efficiency. This can be viewed as a form of dimension reduction, increasing reran-
domization acceptance probability by downweighting less important directions in
the covariate space h.

For simplicity, we restrict to the case of estimating θn = SATE. Example 3.8
showed that

√
n(θ̂− SATE)|W1:n ⇒ N (0, V (γ0)) + γ′0ZhA, independent RV’s with

ZhA = Zh|Zh ∈ A and variance V (γ0) that does not depend on A. The term ZhA

arises from residual imbalances in h due to slackness in the acceptance region,
A ̸= {0}. The coefficient γ0 comes from the partially linear regression23

Ȳ = γ′0h+ t0(ψ) + e, E[e|ψ] = 0, E[eh] = 0. (5.1)

All together, the residual imbalance term γ′0ZhA is the limiting distribution under
rerandomization of γ′0

√
n(h̄1−h̄0), the projection of covariate imbalances in h along

the direction γ0. This suggests an oracle acceptance criterion that rerandomizes
until the imbalance |γ′0

√
n(h̄1 − h̄0)| ≤ ϵ, with A = {x : |γ′0x| ≤ ϵ}, reducing the

problem to one dimension from arbitrary dim(h). Of course, this oracle design is
infeasible since γ0 is unknown when designing the experiment.

5.1 Minimax Rerandomization

Since γ0 is unknown at design-time, we instead take a minimax approach that
incorporates prior information about the coefficient γ0. For belief set B ⊆ Rdh

specified by the researcher, consider rerandomizing until the worst case imbalance
consistent with B is small enough,

sup
γ∈B

|γ′
√
n(h̄1 − h̄0)| ≤ ϵ. (5.2)

Equivalently, for imbalance In =
√
n(h̄1− h̄0) we rerandomize until pB(In) ≤ ϵ

for the convex penalty function pB(x) = supγ∈B |γ′x|. This significantly general-
izes the quadratic imbalance penalty p(x) = x′ Var(h)−1x implicitly used by Ma-
halanobis rerandomization (Example 2.4). Our next result shows that Equation
5.2 is a linear rerandomization design, characterizing the induced region A.

23This expansion is without loss. We do not impose well-specification E[e|ψ, h] = 0.
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Figure 2: Prior information B and A0 = ϵB◦ for Example 5.2.

Proposition 5.1 (Acceptance Region). The criterion pB(In) ≤ ϵ ⇐⇒ In ∈ A0

for A0 = ϵB◦ with B◦ = {x : supγ∈B |γ′x| ≤ 1} ⊆ Rdh, the absolute polar set of
B. The set A0 is symmetric and convex. If B is bounded, A0 is closed and has
non-empty interior.24

Note that since A0 is symmetric, the discussion after Theorem 3.5 implies that
the asymptotic distribution of θ̂ under the design in Equation 5.2 is centered at
zero. We let B be totally bounded in what follows. The proposition shows that
in this case A0 is a “nice” set: symmetric, convex, and with non-empty interior,
satisfying the conditions of Assumption 3.1.

Dimension Reduction. The oracle region A = {x : |γ′0x| ≤ ϵ} reduced the
rerandomization problem to one dimension for arbitrary dim(h). Similarly, the
minimax acceptance region A0 = ϵB◦ can be viewed as a “soft” form of dimension
reduction. To see this, note that the region A0 is very stringent about imbalances
√
n(h̄1− h̄0) aligned with our belief set B, but can allow large imbalances in direc-

tions approximately orthogonal to B, effectively downweighting these directions
in the space of covariates h. This effect can be seen in the following example,
depicted in Figure 2.

Example 5.2 (Ball). One natural belief specification is to set B = γ̄ + B2(0, u),
for an uncertainty parameter u and a priori coefficient guess γ̄ ≈ γ0. Lemma 5.3
below derives the corresponding acceptance region A0 = {x : |x′γ̄|+u|x|2 ≤ ϵ}. For
small u, acceptance region A0 mimics the oracle, allowing very large imbalances

24If intB ̸= ∅ then A0 is bounded. See Aliprantis and Border (2006) for more on polar sets.
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√
n(h̄1− h̄0) as long as γ̄′

√
n(h̄1− h̄0) ≈ 0. For larger u, A0 penalizes imbalances in

all directions, with a slight extra penalty for being aligned with the coefficient guess
γ̄. This provides a sliding scale of dimension reduction, allowing us to continuously
transition between full-dimensional h and one-dimensional γ̄′h depending on the
uncertainty level u.

More generally, the following lemma provides a useful characterization of the
acceptance region A0 = ϵB◦ from Theorem 5.5 for a large family of specifications of
the belief set B. To state the lemma, recall that |x|p = (

∑
j |xj|p)1/p for p ∈ [1,∞)

and |x|∞ = maxj |xj|. For p ∈ [1,∞], denote Bp(0, 1) = {x : |x|p ≤ 1}.

Lemma 5.3 (Belief Specification). For p ∈ [1,∞], let 1/p + 1/q = 1. Suppose
beliefs B = γ̄ + UBp(0, 1), for γ̄ ∈ Rdh and U invertible. Then the acceptance
region A0 = {x : |x′γ̄|+ |U ′x|q ≤ ϵ}.

Example 5.4 (Rectangle). Assume γ0j ∈ [aj, bj] for each 1 ≤ j ≤ dh, so B =∏dh
j=1[aj, bj]. This allows for sign and magnitude constraints, e.g. 0 ≤ γ0j ≤ m.

Lemma 5.3 shows that the acceptance region has form A0 = ϵB◦ = {x : |x′(a +
b)/2|+ (1/2)

∑
j |xj|bj − |xj|aj ≤ ϵ}, for a = (aj)j, b = (bj)j.

5.2 Minimizing Computational Cost

Intuitively, by ignoring imbalances In =
√
n(h̄1− h̄0) approximately orthogonal to

our beliefs B, we can “stretch” the acceptance region A0 in directions unlikely to
cause large estimation errors, increasing the probability of acceptance P (In ∈ A).
Since the expected number of independent randomizations until acceptance is
P (In ∈ A)−1, we can view this as minimizing the computational cost of reran-
domization, subject to a bound on estimation error. This intuition is formalized
in Theorem 5.5 below. To state the theorem, we first define the family of pos-
sible limiting distributions of θ̂ consistent with our beliefs γ0 ∈ B and choice of
acceptance region A ⊆ Rdh .

Limiting Distributions. We showed above that
√
n(θ̂ − SATE)|W1:n ⇒ L0

for L0 = N (0, V (γ0)) + γ′0ZhA. Since γ0 is unknown, define a family of possible
limiting distributions of θ̂ by LB = {LγA : γ ∈ B,A ⊆ Rdh}, with each LγA =

N (0, V (γ))+γ′ZhA a sum of independent RV’s. For any distribution in this family,
the conditional asymptotic bias of θ̂ given realized covariate imbalances ZhA is
bias(LγA|ZhA) ≡ E[LγA|ZhA]. Our main result shows that the polar acceptance
region A0 = ϵB◦ minimizes asymptotic computational cost P (Zh ∈ A)−1, subject
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to a strict constraint on conditional bias, uniformly over all limiting distributions
consistent with our beliefs.

Theorem 5.5 (Minimax). The acceptance region A0 = ϵB◦ solves25

A0 = argmin
A⊆Rdh

P (Zh ∈ A)−1 s.t. sup
γ∈B

| bias(LγA|ZhA)| ≤ ϵ. (5.3)

In particular, if γ0 ∈ B (well-specification) then | bias(L0|ZhA0)| ≤ ϵ and Var(L0) ≤
Va + ϵ2, where Va is the partially linear variance in Equation 3.4.

The final statement of the theorem shows that if B is well-specified (γ0 ∈
B), setting A0 = ϵB◦ bounds the magnitude of the conditional asymptotic bias
E[L0|ZhA0 ] of the GMM estimator θ̂ above by ϵ. By the law of total variance, this
implies that the variance Var(L0) of the asymptotic distribution

√
n(θ̂ − θn) ⇒

L0 = N (0, Va) + γ′0ZhA0 is within ϵ2 of the optimal partially linear variance Va.

Results closely related to Theorem 5.5 can also be found in the previous work of
Liu et al. (2023), who derive optimal Mahalanobis-style completely rerandomized
designs under a Bayesian criterion, with Gaussian prior on γ0.

Beliefs from Pilot Data. In Section B.1 in the appendix, we extend this
framework to accommodate belief sets specified as Wald regions learned from pilot
data. In that case, Var(L0|Dpilot) ≤ Va+ϵ

2 with high probability, without assuming
well-specification in the second theorem statement.

6 Restoring Normality

In this section, we study optimal linearly adjusted GMM estimation under strat-
ified rerandomization. We show that optimal linear adjustment tailored to the
stratification ψ removes the impact of acceptance region A to first-order, restor-
ing asymptotic normality. This enables standard t-statistic and Wald-test based
inference on the parameters θn and θ0 under stratified rerandomization designs,
provided in Section 7 below. We also describe a novel form of double robustness
to covariate imbalances from combining rerandomization with ex-post adjustment.
Let w denote the covariates used for ex-post adjustment and suppose E[|w|22] <∞.

25Implicitly, we maximize only over Borel-measurable sets A ∈ B(Rdh). The solution A0 is
unique up to the equivalence class {A ∈ B(Rdh) : Leb(A△A0) = 0}, where △ denotes symmetric
difference.
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Definition 6.1 (Adjusted GMM). Suppose that α̂ p→ α ∈ Rdw×dg . For Hi =
Di−p
p−p2

Define the linearly adjusted GMM estimator θ̂adj = θ̂−En[Hiα̂
′wi]. We refer to α̂

as the adjustment coefficient matrix.

First, we extend Corollary 3.6 to provide asymptotics for the adjusted GMM
estimator under pure stratification (A = Rdh).

Proposition 6.2 (Linear Adjustment). Suppose D1:n as in Definition 2.1 with
A = Rdh. Require Assumption 3.2. Then we have

√
n(θ̂adj−θn)|W1:n ⇒ N (0, Va(α))

with Va(α) = v−1
D E[Var(Πa(W, θ0)−α′w|ψ)] and

√
n(θ̂adj−θ0) ⇒ N (0, Vϕ+Va(α)).

A version of this result was given in Cytrynbaum (2024a) for the special case
θ0 = ATE. Motivated by Proposition 6.2, we define the optimal linear adjust-
ment coefficient as the minimizer of the asymptotic variance Va(α), in the positive
semidefinite sense.

Optimal Adjustment Coefficient. Define the coefficient

α0 ∈ argmin
α∈Rdw×dθ

E[Var(Πa(W, θ0)− α′w|ψ)]. (6.1)

Note that if w = h then α0 = γ0 in Theorem 3.5. If E[Var(w|ψ)] ≻ 0, then
the unique minimizer of Equation 6.1 is the partially linear regression coefficient
matrix α0 = E[Var(w|ψ)]−1E[Cov(w,Πa(W, θ0)|ψ)]. Observe that α0 varies with
the stratification variables ψ, as observed in Cytrynbaum (2024b) and Bai et al.
(2024a) for the case of ATE estimation. The main result of this section shows that
adjustment by a consistent estimate of α0 restores asymptotic normality.

Theorem 6.3 (Restoring Normality). Suppose D1:n is rerandomized as in Defi-
nition 2.1. Require Assumption 3.1, 3.2. Let h ⊆ w and suppose α̂ p→ α0. Then
√
n(θ̂adj − θn)|W1:n ⇒ N (0, V adj

a ) and
√
n(θ̂adj − θ0) ⇒ N(0, Vϕ + V adj

a ).

Vϕ = Var(Πϕ(W, θ0)) V adj
a = min

α∈Rdw×dg
v−1
D E[Var(Πa(W, θ0)− α′w|ψ)].

Two-step Adjustment. The optimal coefficient α0 may depend on the un-
known parameter θ0. This suggests a two-step adjustment strategy:

(1) Use the unadjusted GMM estimator θ̂ to consistently estimate α̂ p→ α0.

(2) Report the adjusted estimator θ̂adj = θ̂ − En[Hiα̂
′wi].

Similar to two-step efficient GMM, this process can be iterated until conver-
gence to improve finite sample properties. One feasible estimator α̂ p→ α0 is given
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in the following theorem. To state the result, define the within-group partialled
covariates w̌i = wi −

∑
j∈s(i)wj, where s(i) is the group containing unit i in Def-

inition 2.1. Let Π̂
p→ Π estimate the linearization matrix and denote the score

evaluation ĝi ≡ g(Di, Ri, Si, θ̂). Define the adjustment coefficient estimator

α̂ = vDEn[w̌iw̌
′
i]
−1
[
Covn(w̌i, Π̂ĝi|Di = 1)− Covn(w̌i, Π̂ĝi|Di = 0)

]
. (6.2)

Theorem 6.4 (Feasible Adjustment). Suppose D1:n is as in Definition 2.1. Re-
quire Assumption 3.1, 3.2. Assume that E[Var(w|ψ)] ≻ 0. Then α̂ = α0 + op(1).

In some cases, α0 may not depend on θ0. For example, if a(W, θ) = a1(ψ, θ) +

a2(W ) then α0 = E[Var(w|ψ)]−1E[Cov(w,Πa2(W )|ψ)]. In such cases, one-step
optimal adjustment is possible.

Corollary 6.5 (One-step Adjustment). Suppose a(W, θ) = a1(ψ, θ)+a2(W ). Then
for any θ ∈ Θ, substituting gi = g(Di, Ri, Si, θ) for ĝi in α̂ above, α̂ = α0 + op(1).

One-step adjustment is possible in many linear GMM problems, including the
best linear predictor of treatment effect heterogeneity parameter in Example 3.10.

Example 6.6 (Adjusting CATE Estimate). Continuing Example 3.10, suppose
we want to estimate treatment effect heterogeneity relative to a small vector of
important covariates X, while adjusting optimally for larger set of measured
covariates w to both improve precision and restore asymptotic normality un-
der rerandomization. For GMM score g(Y,D,X, θ) = (HY − X ′θ)X we have
θn = argminθ En[(Yi(1)−Yi(0)−X ′

iθ)
2]. Then a(W, θ) = Ȳ X and Π = E[XX ′]−1.

Letting θ = 0 gives g(Y,D,X, 0) = HYX. After some algebra, Corollary 6.5
shows that α̂ = α0 + op(1) for α̂ = En[w̌iw̌

′
i]
−1[(1 − p) Covn(w̌i, YiXi|Di = 1) +

pCovn(w̌i, YiXi|Di = 0)]En[XiX
′
i]
−1.

6.1 Double Robustness from Rerandomization

Theorem 6.3 shows that stratified rerandomization behaves like optimal ex-post
adjustment tailored to both the stratification and GMM problem.26 However, we
find in our simulations and empirical application that stratified rerandomization
can perform significantly better than ex-post adjustment in finite samples, and
further efficiency gains are possible by combining both methods. In this sub-
section, we provide a brief theoretical justification for this phenomenon, showing

26For the case without stratification, this equivalence was originally shown in Li et al. (2018).
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Figure 3: Adjustment vs. Rerandomization, θn = SATE and n ∈ {150, 500}.

that combining rerandomization and adjustment provides a novel form of double
robustness to covariate imbalances.

Let h = w so α0 = γ0. Then we can denote α̂ = γ̂. Consider the partially
linear projection Πa(W, θ0) = γ′0h+ t(ψ) + e with e ⊥ h and E[e|ψ] = 0.27 Define
t̄d = En[t(ψi)|Di = d] and note that t̄1− t̄0 = op(n

−1/2) by fine stratification on ψ.
Then by Lemma 3.4, adjusted GMM θ̂adj = θ̂ − γ̂′(h̄1 − h̄0) has

√
n(θ̂adj − θn) =

√
n[(γ0 − γ̂)′(h̄1 − h̄0) + (t̄1 − t̄0) + (ē1 − ē0)] + op(1)

= (γ0 − γ̂)′
√
n(h̄1 − h̄0) +

√
n(ē1 − ē0) + op(1).

This shows a form of double robustness from combining rerandomization with ex-
post adjustment. If the estimation error γ0 − γ̂ is large, then the first imbalance
term above may still be negligible as long as we rerandomized until

√
n(h̄1 − h̄0)

is small enough. By contrast, without rerandomization adjustment will perform
poorly, as shown in the LHS of Figure 3 where γ0 is not estimated well for small
n and large dim(w). This effect is exacerbated by stratification, since the within-
stratum partialling operation w̌i = wi −

∑
j∈s(i)wj tends to decrease the variance

of the regressors wi, making estimation of α0 more difficult.28

The product structure shows that even when both γ̂−γ0 and h̄1− h̄0 are small,
we get an extra benefit from combining the two methods. This is evident from the
RHS of Figure 3 with n = 500, where adjustment is competitive, but rerandom-
ization still performs better, and combining the two methods is best. This effect
is especially important in regimes where the optimal adjustment coefficient α0 is
poorly estimated, such as for small n and large dim(w), or otherwise ill-conditioned
design matrix En[w̌iw̌

′
i] ≈ E[Var(w|ψ)]. A full theory of high-dimensional strat-

27This is the partially linear projection of Πa(W, θ0) on ψ, h and is without loss of generality.
28The condition number of En[w̌iw̌i] generally increases as we stratify more finely.

25



ification, rerandomization, and ex-post adjustment is beyond the scope of the
current work, but this is an interesting area for future research.29

7 Variance Bounds and Inference Methods

In this section, we provide methods for inference on generic causal parameters
under stratified rerandomization designs. We make crucial use of asymptotic nor-
mality of the optimally adjusted GMM estimator θ̂adj developed in the previous
section. The asymptotic variance for estimating the finite population parameter θn
is generally not identified. To enable inference, we provide novel identified upper
bounds on the variance, allowing for conservative inference that still reflects the
precision gains from stratified rerandomization. The asymptotic variance for esti-
mating the superpopulation parameter θ0 is identified, and in this case we provide
asymptotically exact inference methods.

7.1 Variance Bounds

First, we briefly review the classical variance bounds for θn = SATE estimation
under completely randomized assignment. In this case, we have

√
n(θ̂−SATE) ⇒

N (0, Va) with Va = Var(D)−1Var(Ȳ ) for Ȳ = (1 − p)Y (1) + pY (0). The vari-
ance Var(Ȳ ) ∝ Cov(Y (1), Y (0)). Since Y (1) and Y (0) are never simultaneously
observed, Va is not identified. Let σ2

d = Var(Y (d)) and τ = Y (1) − Y (0). The
Cauchy-Schwarz inequality |Cov(Y (1), Y (0))| ≤ σ1σ0 and some algebra produces

Va =
σ2
1

p
+

σ2
0

1− p
− Var(τ) ≤ σ2

1

p
+

σ2
0

1− p
− (σ1 − σ0)

2 ≤ σ2
1

p
+

σ2
0

1− p
. (7.1)

Both upper bounds were proposed in Neyman (1990). Theorem 7.1 below extends
the sharper bound to generic finite population causal parameters, accounting for
both design-time stratified rerandomization and optimal ex-post adjustment.

To develop the bounds, recall that
√
n(θ̂adj − θn) ⇒ N(0, V adj

a ) with V adj
a =

v−1
D E[Var(Πa(W, θ0)−α′

0w|ψ)], where α0 = E[Var(w|ψ)]−1E[Cov(w,Πa(W, θ0)|ψ)]
was the optimal adjustment coefficient. By definition, Πa(W, θ0) = vDΠ(g1(W, θ0)−
g0(W, θ0)). Then the adjustment coefficient may be expanded as α0 = β1 − β0

for coefficients βd = E[Var(w|ψ)]−1E[Cov(w, vDΠgd(W, θ0)|ψ)]. Denote gd =

29There are analytical complications from conditioning on
√
n(h̄1 − h̄0) ∈ A e.g. with dim(h)

growing. A recent breakthrough on this question was achieved by the careful analysis of Wang
and Li (2022) for the case of complete rererandomization.
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gd(W, θ0) and define the “within-arm” influence functions md ≡ vDΠgd − β′
dw.

Tighter bounds are possible by targeting a fixed scalar contrast c′θn for some
c ∈ Rdθ . From Theorem 6.3, we have

√
n(c′θ̂adj − c′θ0) ⇒ N(0, V adj

a (c)) for
V adj
a (c) = c′V adj

a c. In terms of md, this is

V adj
a (c) = c′v−1

D E[Var(vDΠ(g1 − g0)− (β1 − β0)
′w|ψ)]c

= v−1
D E[Var(c′m1 − c′m0|ψ)].

Similarly to above, V adj
a (c) ∝ E[Cov(c′m1, c

′m0|ψ)] where the cross-term is
generically not identified, since m1 and m0 are not simultaneously observed. How-
ever, denoting σ̃2

d(c) = E[Var(c′md|ψ)] we have the following simple upper bound:

Theorem 7.1 (Variance Bounds). Under the conditions of Theorem 6.3, we have

V adj
a (c) ≤ v−1

D (σ̃1(c) + σ̃0(c))
2 = v−1

D

(
σ̃2
1(c)

1− p
+
σ̃2
0(c)

p

)
−
(
σ̃1(c)

1− p
− σ̃0(c)

p

)2

.

We provide a consistent estimator of the bound V̄ adj
a (c) in Section 7.2 below.

The next example shows how Theorem 7.1 generalizes the classical Neyman bounds
for the simple case of inference on θn = SATE under pure stratified randomization
(A = Rdh) and optimal ex-post adjustment.

Example 7.2 (Pure Stratification). Let θn = SATE so c = 1. Then for H = D−p
p−p2

and GMM score g(D, Y, θ) = HY − θ have Π = 1 and vDΠg1 = (p− p2)Y (1)/p =

(1 − p)Y (1). Then β1 = (1 − p)δ1 for δ1 = argminδ E[Var(Y (1) − δ′w|ψ)] we
have m1 = (1 − p)(Y (1) − δ′1w). Similarly, m0 = p(Y (0) − δ′0w) with δ0 =

argminδ E[Var(Y (0) − δ′w|ψ)]. Plugging into the second expression in Theorem
7.1, the variance V adj

a = minγ v
−1
D E[Var(Ȳ − γ′w|ψ)] is bounded above by

V̄ adj
a =

E[Var(Y (1)− δ′1w|ψ)]
p

+
E[Var(Y (0)− δ′0w|ψ)]

1− p

− (E[Var(Y (1)− δ′1w|ψ)]1/2 − E[Var(Y (0)− δ′0w|ψ)]1/2)2.

For unadjusted complete randomization (ψ = 1, w = 0), we recover the sharper
Neyman bound in Equation 7.1. If ψ ̸= 1 and w = 0, we get a “finely stratified”
bound, tighter for large difference in expected residual variance.

Remark 7.3 (Covariate-Assisted Bounds by Design). In some contexts, it is pos-
sible to use covariate information to tighten finite population variance bounds,
e.g. as in Abadie et al. (2020). For example, under complete randomization
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with θn = SATE, the non-identified Cov(Y (1), Y (0)) = E[Cov(Y (1), Y (0)|ψ)] +
Cov(E[Y (1)|ψ], E[Y (0)|ψ]) ≡ v1 + v2 by law of total covariance. Only v1 is non-
identified, while v2 can be consistently estimated using ψ. In our context, however,
the term v2 is already removed from the asymptotic variance due to stratified ran-
domization of D1:n. More generally, under stratified rerandomization with adjust-
ment, Va ∝ v1 = E[Cov(Y (1)−δ′1w, Y (0)−δ′0w|ψ)], so covariate-assisted tightening
happens “automatically” by design. Relative to the papers above, our work pro-
vides a tighter upper bound on v1 even after covariate-assistance, corresponding
to the sharper Neyman bound in Equation 7.1.

Remark 7.4 (Sharp Bounds). For θn = SATE estimation under completely ran-
domized assignment, Aronow et al. (2014) derive sharp upper bounds on the vari-
ance Va = v−1

D Var(Ȳ ). In principle, such bounds could be extended to the more
general designs and estimators in our current setting. However, this construc-
tion and the associated variance estimators are quite involved, so we leave this
significant extension to future work.30

7.2 Inference on the Finite Population Parameter

Building on the previous section, we construct a consistent estimator of the vari-
ance upper bound V̄ adj

a (c), enabling asymptotically conservative inference on linear
contrasts of the finite population parameter c′θn under general designs.

Let Sn denote the set of groups (strata) constructed in Definition 2.1. For
s ∈ Sn, denote number of treated a(s) =

∑
i∈sDi and group size k(s) = |s|. For

any Π̂
p→ Π define estimators of the optimal within-arm adjustment coefficients

βd above by β̂d = vDEn[w̌iw̌
′
i]
−1Covn(w̌i, Π̂ĝi|Di = d). Note that β̂1 − β̂0 =

α̂, our estimator of the optimal adjustment coefficient in Section 6. For ĝi ≡
g(Di, Xi, Si, θ̂adj), define m̂i ≡ vDΠ̂ĝi−Diβ̂

′
1wi− (1−Di)β̂

′
0wi. First, suppose each

group has at least two treated and control units,

v̂1 = n−1
∑
s∈Sn

1

a(s)− 1

∑
i ̸=j∈s

m̂im̂
′
jDiDj/p

v̂0 = n−1
∑
s∈Sn

1

(k − a)(s)− 1

∑
i ̸=j∈s

m̂im̂
′
j(1−Di)(1−Dj)/(1− p)

30Alternatively, note E[Cov(Y (1), Y (0)|ψ)] ≤ E[σ1(ψ)σ0(ψ)] ≤ E[σ2
1(ψ)]

1/2E[σ2
0(ψ)]

1/2. The-
orem 7.1 uses the second bound, which we prefer since it can be naturally estimated using
the stratification. The first bound could be tighter for large heteroskedasticity, but requires
additional nonparametric estimation.
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Note that this requires 2 ≤ a(s) ≤ k(s)− 2 ∀s ∈ Sn.

Collapsed Strata. If number of treated units a(s) = 1 or a(s) = k(s) − 1,
as in matched pairs designs, the estimators above do not exist. In this case, we
follow31 the method of collapsed strata (Hansen et al. (1953)), first agglomerating
the original groups s ∈ Sn into larger groups satisfying 2 ≤ a(s) ≤ k(s) − 2. For
example, in a matched triples design with p = 1/3, we agglomerate two triples
into a larger group s′ of 6 units with a(s′) = 2. To do so, for each s ∈ Sn define
the centroid ψ̄s = |s|−1

∑
i∈s ψi. Let ν : Sn → Sn be a bijective matching between

groups satisfying ν(s) ̸= s, ν2 = Id, and matching condition 1
n

∑
s∈Sn |ψ̄s−ψ̄ν(s)|

2
2 =

op(1). In practice, ν is obtained by matching the group centroids ψ̄s into pairs
using the Derigs (1988) non-bipartite matching algorithm. Define Sνn = {s∪ν(s) :
s ∈ Sn} to be the enlarged groups. If a(s) = 1 or a(s) = k(s) − 1, we replace Sn
with the larger groups Sνn in the definitions of v̂1 and v̂0.

Variance Estimator. Finally, define û1 = En[
Di
p
m̂im̂

′
i] − v̂1 and û0 =

En[
1−Di
1−p m̂im̂

′
i] − v̂0. The proof of Theorem 7.6 below shows that c′ûdc

p→ σ̃2
d(c)

from Theorem 7.1, suggesting the variance estimator

V̂ adj
a (c) = v−1

D ([c′û1c]
1/2 + [c′û0c]

1/2)2. (7.2)

To formalize this, we require a slight strengthening of GMM Assumption 3.2.

Assumption 7.5. Exists θ0 ∈ U ⊆ Θ open s.t. E[supθ∈U |∂/∂θ′gd(W, θ)|2F ] <∞.

Theorem 7.6 (Inference). Suppose D1:n as in Definition 2.1 and impose Assump-
tions 3.1, 3.2, 7.5. Then V̂ adj

a (c)
p→ V̄ adj

a (c) ≥ V adj
a (c).

Then the confidence interval Ĉfin ≡ [c′θ̂adj±z1−α/2V̂ adj
a (c)1/2/

√
n] has coverage

P (c′θn ∈ Ĉfin) ≥ 1− α− o(1) by Theorem 6.3 and Theorem 7.6.

The main result is stated for adjusted GMM estimation under stratified reran-
domization, with ex-post adjustment to restore normality. For the case of pure
stratification (no rerandomization) without adjustment, we can just set w = 0 in
the formulas above, obtaining a specialization V̂a(c) of V̂ adj

a (c):

Corollary 7.7 (Pure Stratification). Impose Assumptions 3.1, 3.2, 7.5 and sup-
pose that A = Rdh and w = 0. Then V̂a(c)

p→ V̄a(c) ≥ Va(c) = c′Vac.
31See Abadie and Imbens (2008), Bai et al. (2021), Cytrynbaum (2024b), Bai et al. (2024b) for

recent use of this method for inference on superpopulation parameters. In particular, Bai et al.
(2021) showed asymptotic exactness of the collapsed strata method for matched pairs designs
under the matching condition above.
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7.3 Inference on the Superpopulation Parameter

The asymptotic variance V = Vϕ+ V adj
a for adjusted estimation of θ0 under strat-

ified rerandomization (Theorem 6.3) is identified. In this case, we can modify the
approach above to provide asymptotically exact inference methods. Additionally
define

v̂10 = n−1
∑
s∈Sn

k

a(k − a)
(s)
∑
i,j∈s

m̂im̂
′
jDi(1−Dj).

With this extra definition in hand, set V̂ = Varn(m̂i)− vD(v̂1 + v̂0 − v̂10 − v̂′10).

Theorem 7.8 (Superpopulation). Suppose D1:n is as in Definition 2.1, and im-
pose Assumptions 3.1, 3.2, 7.5. Then V̂

p→ Vϕ + V adj
a .

By Theorem 6.3,
√
n(θ̂adj − θ0) ⇒ N(0, Vϕ + V adj

a ), so the result above allows
for asymptotically exact joint inference on θ0 e.g. using standard Wald-test based
confidence regions. For example, the interval Ĉpop ≡ [c′θ̂adj ± z1−α/2(c

′V̂ c)1/2/
√
n]

has P (c′θ0 ∈ Ĉpop) = 1− α − o(1). Similarly to above, this CI can be specialized
to pure stratification without adjustment by setting w = 0.

8 Simulations

In this section, we use simulations to study the finite-sample properties of var-
ious designs and estimators analyzed above. We consider data generated as
Y (d) = md(r) + ed for observables r, varying the covariates ψ, h, and w used
for stratification, rerandomization, and adjustment respectively. In models 1-3,
we consider quadratic outcome models of the form Y (d) = cd + r′βd + r′Qdr + ed.
We vary m = dim(r), setting parameters Qd and βd as follows:

Model 1: β1 = 1m/
√
m, β0 = 0 and Qd = 0, cd = 0 for d ∈ {0, 1}.

Model 2: As in Model 1, but with β1,1 = 4, β0,1 = 0, βd,2:m = 1m−1/
√
m− 1.

Model 3: As in 2, butQ1 = Diag(α1) for α1,1 = 2 and α1,2:m = 1/(2
√
m− 1).

Model 4: As in 2, but with Y (d) = 2 arctan(r′βd) + ed.

In Model 1, all covariates have equal importance. In Models 2-4, we think of r1
as a baseline outcome with more importance than r2:m. This asymmetric structure
arises frequently in practice due to the relatively high predictive power of baseline
outcomes for endline outcomes. The covariates are generated r ∼ N (0, Im). The
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Figure 4: Designs and rerandomization types for n = 150, varying dim(r).

residuals (e1, e0) ∼ N (0, Σ̃) with Var(ed) = 4, Corr(e1, e0) = 0.8, and (e1, e0) ⊥⊥ r.
We set p = 1/2 in all simulations, corresponding to matched pairs rerandomization
for ψ, h non-constant.

In Table 1, we compare the efficiency and inference properties of various de-
signs for estimating θn = SATE. The design C refers to complete randomization.
Design S is full stratification: for model 1, we set ψ = r, while for models 2-4, we
let ψ1 =

√
2r1 and ψ2:m = r2:m in the matching algorithm, putting more weight on

the covariate believed to be important a priori.32 Design SR is stratified reran-
domization, with univariate ψ = r1 and h = r2:m. In this first simulation, we use
simple Mahalanobis-style rerandomization (Example 2.4), with acceptance prob-
ability α = 1/500. θ̂ is the unadjusted GMM estimator of Definition 2.4, while
θ̂adj is the optimally adjusted GMM estimator of Theorem 6.4 with adjustment
covariates w = h. For each model, we normalize the MSE of θ̂ under complete ran-
domization C to 1. All inference results are based on the adjusted estimator θ̂adj,
comparing performance across different designs. In particular, Cover Fin. refers to
coverage of θn using the (conservative) finite population variance bound estimator
V̂a(c) in Section 7.2 and confidence interval Ĉfin. Cover Pop. presents coverage
of θ0 for Ĉpop, using asymptotically exact variance estimator V̂ from Section 7.3.
CI Width Fin. and Pop. report the width confidence intervals, normalized so that
the width of Ĉpop is 1 for θ̂adj and design C.

We summarize a few important findings from Table 1. Stratified rerandomiza-
tion SR is the most efficient design across all specifications and for both estimators
θ̂ and θ̂adj. While ex-post optimal adjustment and rerandomization have (approxi-
mately) the same effect asymptotically (Theorem 6.3), there is an additional finite
sample efficiency gain from combining rerandomization and adjustment (SR and

32We match using the algorithms in Bai et al. (2021) for p = 1/2 and Cytrynbaum (2024b)
for p ̸= 1/2.
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n = 300 n = 600
MSE Cover CI Width MSE Cover CI Width

dim(r) Mod. Design θ̂ θ̂adj Pop. Fin. Pop. Fin. θ̂ θ̂adj Pop. Fin. Pop. Fin.

C 1.00 0.89 0.94 0.94 1.00 0.70 1.00 0.86 0.96 0.96 1.00 0.69
1 S 0.85 0.87 0.94 0.98 1.03 0.82 0.87 0.88 0.95 0.97 1.02 0.77

SR 0.81 0.81 0.96 0.97 1.01 0.73 0.86 0.86 0.95 0.96 1.01 0.70

C 1.00 0.62 0.94 0.94 1.00 0.67 1.00 0.61 0.95 0.97 1.00 0.66
2 S 0.62 0.62 0.95 0.97 1.04 0.80 0.64 0.63 0.95 0.97 1.02 0.74

5 SR 0.55 0.55 0.95 0.97 1.03 0.71 0.62 0.61 0.96 0.97 1.01 0.68

C 1.00 0.73 0.94 0.97 1.00 0.76 1.00 0.75 0.96 0.98 1.00 0.76
3 S 0.60 0.64 0.95 0.98 0.98 0.75 0.62 0.62 0.96 0.98 0.96 0.68

SR 0.53 0.53 0.96 0.98 0.94 0.61 0.59 0.59 0.96 0.97 0.92 0.57

C 1.00 0.80 0.93 0.95 1.00 0.86 1.00 0.81 0.94 0.97 1.00 0.86
4 S 0.73 0.74 0.95 0.98 1.02 0.92 0.79 0.79 0.96 0.97 1.01 0.88

SR 0.70 0.71 0.95 0.97 1.00 0.85 0.79 0.78 0.96 0.97 0.99 0.84

C 1.00 0.93 0.94 0.95 1.00 0.73 1.00 0.85 0.94 0.96 1.00 0.71
1 S 0.95 0.97 0.93 0.98 1.07 0.93 0.93 0.95 0.93 0.97 1.03 0.84

SR 0.88 0.87 0.95 0.98 1.04 0.83 0.85 0.83 0.95 0.97 1.02 0.77

C 1.00 0.63 0.93 0.95 1.00 0.70 1.00 0.65 0.95 0.96 1.00 0.68
2 S 0.69 0.68 0.94 0.99 1.09 0.97 0.74 0.71 0.94 0.98 1.04 0.83

20 SR 0.59 0.61 0.96 0.99 1.11 0.87 0.65 0.64 0.96 0.98 1.06 0.77

C 1.00 0.75 0.92 0.96 1.00 0.76 1.00 0.78 0.95 0.97 1.00 0.76
3 S 0.69 0.75 0.94 0.98 1.06 0.93 0.76 0.76 0.94 0.99 1.01 0.82

SR 0.53 0.57 0.96 0.99 1.02 0.76 0.59 0.60 0.95 0.98 0.96 0.66

C 1.00 0.82 0.92 0.94 1.00 0.86 1.00 0.84 0.96 0.97 1.00 0.86
4 S 0.83 0.84 0.94 0.98 1.08 1.05 0.94 0.91 0.95 0.96 1.04 0.95

SR 0.75 0.75 0.95 0.98 1.05 0.94 0.83 0.82 0.96 0.97 1.02 0.88

Table 1: Design Comparison
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θ̂adj), due to the double robustness property discussed in Section 6. This effect is
especially pronounced for small n and large dim(r), as shown previously in Figure
3, due to poor estimation of the optimal adjustment coefficient γ0. For inference,
CI Width is slightly larger for S, SR than for C, despite SR being the most ef-
ficient. Under design C, the estimators V̂ and V̂a tend to be too small, leading
to undercoverage.33 By contrast, coverage is approximately nominal for designs S
and SR. Note Ĉfin is often smaller than Ĉpop, showing that experimenters only
interested in covering θn can report smaller confidence intervals.

Figures. We provide additional results for Model 4 in Figure 4, letting n =

150 and varying dim(r). CR refers to complete rerandomization and “quadratic”
refers to the Mahalanobis design in Example 2.4. On the LHS, we see that pure
fine stratification on all variables is competitive for small dim(r), while stratified
rerandomization is preferred for dim(r) > 2. On the RHS, we compare different
types of rerandomization. The figure shows how Opt1 and Opt2 reduce the
curse of dimensionality for rerandomization, since we are able to downweight less
important dimensions of h. For a more detailed simulation comparing Mahalanobis
vs. propensity vs. optimized rerandomization, see Section B.2 in the appendix.

9 Empirical Application

In this section, we apply our methods to data from the “Opportunity Knocks”
experiment in Angrist et al. (2013). The authors randomized eligibility to receive
payment for academic performance to first and second year students at a large
Canadian university. They estimated the effect of the program on future stu-
dent GPA, graduation, and other outcomes. They measured baseline covariates
including high school GPA, sex, age, native language, and parent’s education.
Randomization was coarsely stratified on year in college, sex, and quartiles of
high school GPA within year-sex cells, with approximately p = 3/10 of n = 1203

students assigned to receive incentives.

Some students assigned treatment Z = 1 (viewed as an instrument) did not
engage with the program either by checking their earnings or making contact with
the program advisor. The authors view this as noncompliance with the instru-
ment Z and estimate both intention-to-treat (ITT) effects and effects on compliers
(LATE). Let D ∈ {0, 1} denote endogeneous decision to engage with the program,

33This could be fixed by a sample-splitting or jackknife approach for GMM variance estimation
under (non-iid) completely randomized treatment assignment, but this is not our focus here.
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with D(z) the potential treatments, Y (d) the potential outcomes, and T (z) =

Y (D(z)) the ITT potential outcomes with realized outcome T = Y (D(Z)) = Y .
Angrist et al. (2013) also estimate ITT-style treatment effect heterogeneity along
several dimensions, such as gender and student reported financial need.

In what follows, we use this data to study the efficiency and inference prop-
erties of various designs and estimators, including complete randomization, fine
stratification on different variable sets, and coarse stratification as in the original
study, also including rerandomized versions of each. To do so, we follow the com-
mon approach (e.g. Li et al. (2018), Bai (2022)) of imputing the missing potential
outcomes, which allows us to simulate the MSE, coverage properties, and CI width
under various counterfactual designs. In particular, we set T̂ (z) = T = Y if Z = z

in the observed data, and impute T̂ (z) = m̂T
z (X) + σ̂Tz (X)ϵz if Z = 1 − z, where

m̂z(X), σ̂z(X) are estimated using cross-validated LASSO and random forests
applied to 11 baseline covariates their full pairwise interactions. The residual
ϵz ∼ N (0, 1). We similarly impute missing potential treatments D̂(z) for all units
with D̂(z) = D if Z = z. See Section B.3 for more details on this procedure.

Given imputed data (Xi, T̂i(z), D̂i(z)) for units i = 1, . . . , 1203, we simulate
an experiment of size n as follows: (1) sample (Xi, T̂i(z), D̂i(z))

n
i=1 with replace-

ment, (2) draw instrument assignments Z̃1:n e.g. by stratified rerandomization
with covariates ψi, hi ⊆ Xi. Then (3) observe realized treatments D̃i = D̂i(Z̃i)

and outcomes Ỹi = T̃i = T̂i(Z̃i) and (4) form estimators θ̂ and θ̂adj and confidence
intervals Ĉfin and Ĉpop for the parameters LATE and CLATE described below.

We let rerandomization and adjustment sets h, w include all 11 covariates
above, as well as the pairwise interactions of HS GPA, sex, year, and mother
and father’s education with both financial need F ∈ {0, 1} and HS GPA G ∈ R,
for a total of 21 adjustment covariates. The interactions are motivated by our
desire to estimate treatment effect heterogeneity along the dimensions F and G,
as discussed in Example 3.10. We simulate the following designs: C is complete
randomization, and CR is rerandomization. S is the original study design (coarse
stratification), and SR is its rerandomized version using covariates h above. F is
fine stratification on HS GPA, and FR is finely stratified rerandomization. F+ is
fine stratification on HS GPA, sex, and year and similarly for the rerandomized
version FR+.34 We let p = 3/10 and n = 1200 for all.

Table 2 presents efficiency and inference results for LATE-style treatment ef-
34For the last four designs F-FR+, we remove covariates included in ψ from w and h, to ensure

that E[Var(w|ψ)] ≻ 0, as discussed in Section 6. This does not affect first-order efficiency.
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MSE Cover CI Width

θn (LATE) Design θ̂ θ̂adj Pop. Fin. Pop. Fin.

C 1.19 1.00 0.94 0.98 1.00 0.95
CR 1.00 0.97 0.95 0.99 1.00 0.94
S 1.02 1.02 0.94 0.97 0.99 0.93

LATE SR 1.01 1.02 0.94 0.97 0.99 0.94
F 1.04 0.97 0.95 0.98 0.98 0.91

FR 0.96 0.94 0.94 0.99 0.98 0.91
F+ 0.96 0.98 0.95 0.98 1.01 0.94

FR+ 0.98 0.99 0.95 0.98 1.01 0.94

C 3.30 1.00 0.93 0.98 1.00 1.01
CR 1.97 0.89 0.95 0.98 0.98 0.97
S 3.19 0.97 0.95 0.98 0.98 0.99

CLATE SR 1.94 0.87 0.96 0.99 0.98 0.98
(Fin.) F 3.20 1.05 0.94 0.98 1.04 1.04

FR 1.95 1.00 0.95 0.98 1.02 1.01
F+ 3.01 1.02 0.95 0.98 1.07 1.07

FR+ 1.57 0.98 0.95 0.98 1.06 1.06

C 3.06 1.00 0.92 0.98 1.00 1.02
CR 1.76 0.85 0.95 0.99 0.97 0.97
S 1.42 0.98 0.94 0.98 0.97 1.01

CLATE SR 1.07 0.89 0.94 0.99 0.97 0.99
(GPA) F 0.86 0.92 0.97 0.98 1.10 0.97

FR 0.79 0.83 0.97 0.99 1.05 0.94
F+ 1.41 1.44 0.96 0.95 1.39 1.32

FR+ 1.32 1.34 0.96 0.97 1.38 1.32

Table 2: LATE Parameters
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fects on compliers. In particular, if Ci = 1(Di(1) − Di(0) > 0) is a compliance
indicator then LATE = En[Yi(1)−Yi(0)|Ci = 1] and CLATE (Example 2.7) is the
coefficient on xi in the infeasible regression

θn = argmin
θ

En[(Yi(1)− Yi(0)− θ′(1, xi))
2|Ci = 1].

We consider heterogeneity variables xi = Fi ∈ {0, 1}, an indicator for student
financial stress, and xi = Gi ∈ R, the student’s HS GPA. For xi = Fi, the CLATE
has a simple interpretation as the difference in treatment effects for compliers with
and without financial stress:

CLATE = En[Yi(1)− Yi(0)|Fi = 1, Ci = 1]− En[Yi(1)− Yi(0)|Fi = 0, Ci = 1].

Cover Pop. and CI Width Pop. refer to inference on the superpopulation esti-
mands θ0 corresponding to θn, i.e. θ0 = argminθ E[(Y (1)−Y (0)−θ′(1, x))2|C = 1]

for θn = CLATE and θ0 = E[Y (1)− Y (0)|C = 1] for LATE. The MSE of θ̂adj and
the CI width of Ĉpop are normalized to 1 under design C.

We briefly summarize our main findings from the tables. The efficiency differ-
ences between designs are more pronounced for the CLATE heterogeneity variables
than for the LATE. Finely stratified rerandomization FR is efficient for the major-
ity of estimands, while SR is slightly more efficient for estimating treatment effect
heterogeneity along the financial need variable F ∈ {0, 1}. Confidence intervals
broadly have correct coverage. The width of Ĉfin for inference on θn is slightly
smaller than Ĉpop for inference on θ0 on average, with the largest improvements
for estimating CLATE (GPA).

10 Discussion and Recommendations for Practice

At a high level, we recommend experimenters finely stratify on a few variables
expected to be most predictive of outcomes,35 while rerandomizing to balance the
remaining baseline covariates. This can be done using the stratified Mahalanobis
design in Example 2.4 or the optimized designs in Section 5, if the researcher has
a strong prior. Separating the baseline covariates into stratification and reran-
domization tiers is an easy way to balance linear functions of the less important
covariates, without degrading match quality when finely stratifying on the most
important covariates like baseline outcomes.

35More generally, “highly predictive” is defined in the estimand-specific sense of Equation 3.2.
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Our work in Section 6.1 showed that combining stratified rerandomization with
optimal ex-post adjustment provides a form of double robustness to covariate im-
balances between treatment groups, which seemed to matter in our simulations
and empirical application. We recommend experimenters adopt this doubly-robust
approach, using the stratification-tailored adjustment coefficients in Section 6. In
Section 7, we provide the first valid methods for inference on both finite popu-
lation and superpopulation GMM parameters under stratified rerandomization,
enabling inference in new settings. Our work also provides new tools even for
some settings with existing inference methods. For example, experimenters can
use the finite population methods in Section 7.2 for more powerful inference than
is currently available in the setting of stratification without rerandomization, e.g.
in experiments in a convenience sample where we only require coverage of the
finite population parameter.

This discussion also touches on several practical questions for which the the-
ory does not give concrete guidance. For example, exactly which and how many
covariates should we finely stratify on and which should we rerandomize in a given
experiment to maximize finite sample efficiency? It may be possible to formally
develop a high dimensional theory of stratified rerandomization in future work.
However, even with such new technical results, optimizing the partition of co-
variates into stratification vs. rerandomization sets would likely require knowledge
of DGP-specific constants that are not estimable at design-time before outcomes
are observed, and may be difficult to specify beliefs over.36 Providing practically
useful and implementable theoretical guidance for such design issues remains a
difficult open question for future work.

A Proof of Main Asymptotic Results

Below, we carefully distinguish between Pn, the law of the data (W1:n, D1:n) under
“pure” stratified randomization, andQn, the law under rerandomized stratification.
We suppress the n subscript in what follows.

Definition A.1 (Pure Stratification). For (Wi)
n
i=1

iid∼F , let P denote the law of
(W1:n, D1:n) under the design in steps (1) and (2) of Definition 2.1.

We slightly generalize the rerandomization design introduced in Definition 2.1,
which will be useful for our results on nonlinear rerandomization in Section 4.

36For example, this would likely require researchers to specify a prior on objects like the
Lipschitz coefficient of the function ψ → E[a(W, θ0)|ψ].
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Definition A.2 (Rerandomization). Consider the following:

(a) (Acceptance Regions). Let τn = τ + op(1) for τ ∈ Rdτ under P . Define
sample acceptance region Tn = {x : b(x, τn) ≤ 0} and population region
T = {x : b(x, τ) ≤ 0} for b(x, y) a measurable function. Accept D1:n if
In ∈ Tn for In =

√
n(h̄1 − h̄0) + op(1) under P .

(b) (Rerandomization Distribution). Let Fn = σ(W1:n, πn), where πn ⊥⊥ W1:n is
possibly used to break ties in matching (Equation 2.1). For any event B and
P as in Definition A.1, define the rerandomization distribution Q(B|Fn) =

P (B|Fn, In ∈ Tn) and Q(B) = E[Q(B|Fn)].

(c) (Assumptions). Assume P (b(Zh, τ) = 0) = 0 for Zh ∼ N (0, E[Var(h|ψ)]).
Require P (Zh ∈ T ) > 0. Suppose E[|ϕ|22 + |h|22] <∞.

The proof of Theorem 3.5 shows that Definition 2.1 specializes the above to
b(x, y) = b(x) = d(x,A) − d(x,Ac) for d(x,A) = infz∈Rdh |x − z|2. Next, the
following essential lemma shows that the high level properties (e.g. convergence in
probability) of P are inherited by the rerandomized version Q.

Lemma A.3 (Dominance). Let (Bn)n≥1 and (Rn)n≥1 events and random vari-
ables. Suppose that the rerandomization measure Q is as in Definition A.2.

(a) If Bn ∈ Fn then P (Bn) = Q(Bn). If Rn is Fn-measurable then Rn =

op(1)/Op(1) under P ⇐⇒ Rn = op(1)/Op(1) under Q.

(b) Q(Bn) = o(1) if P (Bn) = o(1). If Rn = op(1)/Op(1) under P then Rn =

op(1)/Op(1) under Q.

Proof of Lemma A.3. (a) follows sinceQ = P on Fn by definition. Let c = P (Zh ∈
T ) > 0 by assumption. Define Sn = {P (In ∈ Tn|Fn) ≥ c/2}. Then by Lemma
A.5, P (In ∈ Tn|Fn)

p→ P (Zh ∈ T ) = c, so P (Sn) → 1. We have the upper bound

1(Sn)Q(Bn|Fn) = 1(Sn)P (Bn|In ∈ Tn,Fn) = 1(Sn)
P (Bn, In ∈ Tn|Fn)

P (In ∈ Tn|Fn)

≤ (c/2)−11(Sn)P (Bn, In ∈ Tn|Fn) ≤ (c/2)−1P (Bn|Fn).

The first equality by definition of Q. The first inequality by the definition of Sn.
The final inequality by additivity of measures. Then for rn ≡ (1−1(Sn))Q(Bn|Fn),
we have Q(Bn|Fn) = 1(Sn)Q(Bn|Fn) + rn. Note that |rn| ≤ 1 and rn

p→ 0, so
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EQ[rn] = o(1) by modes of convergence. Then expand Q(Bn) as

EQ[Q(Bn|Fn)] = EQ[1(Sn)Q(Bn|Fn)] + EQ[rn] ≤ (c/2)−1EQ[P (Bn|Fn)] + o(1)

= (c/2)−1EP [P (Bn|Fn)] + o(1) = (c/2)−1P (Bn) + o(1).

The second equality follows from part (a), and the final equality by tower law.
The op(1) results follow by setting Bn = {Rn > ϵ}. The Op(1) results follow by
the op(1) statement and Lemma C.11.

Proof Strategy. Equipped with this lemma, we will take the following ap-
proach to prove Theorem 3.5: (1) show linearization of the GMM estimator θ̂
about θn and θ0 under P , (2) invoke Lemma A.3 to show these properties still
hold under Q, then (3) prove distributional convergence of the simpler linearized
quantities directly under Q.

A.1 Rerandomization Asymptotics

In this subsection, we develop the necessary tools for step (3) in our proof strategy.
First, we state a conditional CLT for pure fine stratification, conditional on the
data W1:n and tie-breaking randomness in the matching procedure πn.

Theorem A.4 (CLT). Suppose E[|a(W )|22] < ∞. Define Fn = σ(W1:n, πn). Let
D1:n as in Definition A.1. Then Xn ≡

√
nEn[Hia(Wi)] has Xn|Fn ⇒ N (0, V ). In

particular, for each t ∈ Rda we have E[eit′Xn|Fn] = ϕ(t)+op(1) with ϕ(t) = e−t
′V t/2

and V = v−1
D E[Var(a|ψ)].

The proof is in Section C.1 below. We use this CLT to establish the following
key lemma, which will shortly allow us to to compute the asymptotic distribution
of

√
nEn[Hia(Wi)] directly under the rerandomization law Q.

Lemma A.5. Let Definition A.2 hold. Let ∆̂a = En[Hiai] and ρ = (a, h). Fix
t ∈ Rda. Let (Za, Zh) ∼ N (0,Σ) for Σ = v−1

D E[Var(ρ|ψ)]. Then under P in
Definition A.1, have E

[
eit

′√n∆̂a1 (In ∈ Tn) |Fn

]
= E

[
eit

′Za1 (Zh ∈ T )
]
+ op(1).

Proof. (1). Define Bn = (
√
n∆̂a, In, τn). Fix t = (t1, t2, t3) ∈ Rdg+dh+dτ and

consider the characteristic function

ϕBn(t) = E[eit
′
1

√
n∆̂a+it′2In+it′3τn|Fn] = eit

′
3τE[eit

′
1

√
n∆̂a+it′2In|Fn] + op(1)

= eit
′
3τE[eit

′
1

√
n∆̂a+it′2

√
n∆̂h |Fn] + op(1) = eit

′
3τe−t

′Σt/2 + op(1) = ϕB(t) + op(1).
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For the second equality, note that eit′3τn p→ eit
′
3τ by continuous mapping. Then

Rn = eit
′
1

√
n∆̂a+it′2

√
n∆̂h(eit

′
3τn − eit

′
3τ ) = op(1). Clearly |Rn| ≤ 2, so E[|Rn||Fn] =

op(1) by Lemma C.9. The third equality is identical, noting that eit′2In p→ eit
′
2

√
n∆̂h

again by continuous mapping. The fourth equality is Theorem A.4 applied to
√
nEn[Hiρi]. The final expression is the characteristic function of B = (Za, Zh, τ)

with (Za, Zh) ∼ N (0,Σ). Then we have shown that Bn|Fn ⇒ B in the sense of
Proposition C.8. Fix t ∈ R and define G(z1, z2, x) = eit

′z11(b(z2, x) ≤ 0), so

G(Bn) = eit
′√n∆̂a1(b(In, τn) ≤ 0) = eit

′√n∆̂a1(In ∈ Tn).

Define EG = {w : G(·) not continuous at w}. By Proposition C.8, if P (B ∈
EG) = 0 then E[G(Bn)|Fn] = E[G(B)] + op(1) = E[G(Za, Zh, τ)] + op(1), which
is the required claim.

To finish the proof, we show that that P (B ∈ EG) = 0. Write G(z1, z2, x) =
f(z1)g(z2, x) for f(z1) = eit

′z1 and g(z2, x) = 1(b(z2, x) ≤ 0) and define discon-
tinuity point sets Ef and Eg as for EG above. By continuity of multiplication
for bounded functions, if z1 ∈ Ec

f and (z2, x) ∈ Ec
g then (z1, z2, x) ∈ Ec

G. By
contrapositive,

EG ⊆ (Ef × Rdh+dτ ) ∪ (R× Eg).

Clearly Ef = ∅, so P (B ∈ EG) = P ((Zh, τ) ∈ Eg). Let E1
g = {zh : (zh, τ) ∈ Eg}.

We have (Zh, τ) ∈ Rdh × {τ}. Then P ((Zh, τ) ∈ Eg) = P (Zh ∈ E1
g ). Since zh →

b(zh, τ) is continuous, {zh : b(zh, τ) > 0} is open. Let zh ∈ {zh : b(zh, τ) > 0}.
Then for small enough r, if z′ ∈ B(zh, r) then b(z′, τ) > 0 and g(z′, τ) = 0, so
g(z′, τ)− g(zh, τ) = 0, so zh is a continuity point. A similar argument applied to
zh ∈ {zh : b(zh, τ) < 0} shows that the discontinuities E1

g ⊆ {zh : b(zh, τ) = 0}.

Finally, we come to the core asymptotic result for step (3) above.

Theorem A.6 (Asymptotic Distribution). Let Definition A.2 hold. Suppose that
(Za, Zh) ∼ v−1

D E[Var((a, h)|ψ)]. Then under Q in Definition A.2:

(a) We have
√
nEn[Hia(Wi)]|Fn ⇒ [Za|Zh ∈ T ] ∼ N (0, Va) + R, independent

RV’s s.t. Va = v−1
D E[Var(a(W ) − γ′0h|ψ)] = minγ∈Rdh×dθ v

−1
D E[Var(a(W ) −

γ′h|ψ)]. The residual term R ∼ γ′0Zh |Zh ∈ T .

(b) Let Xn = En[ϕ(Wi)] + En[Hia(Wi)]. Then we have
√
n(Xn − E[ϕ(W )]) ⇒

[Zϕ+Za|Zh ∈ T ] ∼ N (0, Vϕ)+N (0, Va)+R The RV’s are independent with
Vϕ = Var(ϕ(W )).
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Proof. Consider (a). Let ∆̂a = En[Hia(Wi)]. Let t ∈ Rda . By definition of Q

EQ

[
eit

′√n∆̂a|Fn

]
= E

[
eit

′√n∆̂a | In ∈ Tn,Fn

]
=
E
[
eit

′√n∆̂a1(In ∈ Tn)|Fn

]
P (In ∈ Tn|Fn)

≡ an
bn
.

Define a∞ = E
[
eit

′Za1(Zh ∈ T )
]

and b∞ = P (Zh ∈ T ). By Lemma A.5, an
p→ a∞

and bn
p→ b∞, with b∞ > 0 by assumption in Definition A.2. Then we have

b−1
n = Op(1). Then |an/bn−a∞/b∞| may be expanded as

∣∣∣anb∞−a∞bn
bnb∞

∣∣∣ = Op(1)|(an−
a∞)b∞ + a∞(b∞ − bn)| ≲P |an − a∞| + |b∞ − bn| = op(1). The final equality by
Lemma A.5. Then we have shown

EQ
[
eitAn|Fn

]
=
a∞
b∞

+ op(1) =
E
[
eit

′Za1(Zh ∈ T )
]

P (Zh ∈ T )
= E[eit

′Za|Zh ∈ T ] + op(1).

This proves the first statement. Next, we characterize the law of Za |Zh ∈ T .
Define ϕ(t) ≡ E

[
eit

′Za|Zh ∈ T
]
. Let γ0 ∈ Rdh×dg satisfy the normal equations

E[Var(h|ψ)]γ0 = E[Cov(h, a|ψ)]. Such a γ0 exists and satisfies the stated inequal-
ity by Lemma C.10. Letting Z̃a = Za− γ′0Zh, by Lemma C.10 Z̃a ⊥⊥ Zh and Z̃a is
Gaussian. Then Z̃a ⊥⊥ (Zh,1(Zh ∈ T )). Recall that A ⊥⊥ (S, T ) =⇒ A ⊥⊥ S |T .
Using this fact, we have Z̃a ⊥⊥ Zh |Zh ∈ T . Then for any t ∈ Rdg

ϕ(t) = E[eit
′Za |Zh ∈ T ] = E[eit

′Z̃aeit
′γ′0Zh|Zh ∈ T ]

= E[eit
′Z̃a|Zh ∈ T ]E[eit

′γ′0Zh|Zh ∈ T ] = E[eit
′Z̃a ]E[eit

′γ′0Zh|Zh ∈ T ].

By Proposition C.8, we have shown Za |Zh ∈ T
d
= Z̃a + [γ′0Zh |Zh ∈ T ], where

the RHS is a sum of independent random variables with the given distributions.
Clearly E[Z̃a] = 0 and Var(Z̃a) = v−1

D E[Var(a− γ′0h|ψ)]. This finishes (a).

Next we prove (b). We may expand
√
n(Xn − E[ϕ(W )]) =

√
n(En[ϕ(Wi)] −

E[ϕ(W )]) +
√
n∆̂a ≡ An+Bn. We have An ⇒ N (0, Vϕ) with Vϕ = Var(ϕ(W )) by

vanilla CLT. Then let t ∈ Rda and calculate

EQ

[
eit

′Xn
]
= EQ

[
eit

′AnEQ

[
eit

′Bn|Fn

]]
= ϕ(t)EQ

[
eit

′An
]
+ o(1) = ϕ(t)e−t

′Vϕt/2 + o(1).

The first equality since An ∈ Fn. The second equality since∣∣∣EQ [eit′An(EQ [eit′Bn|Fn

]
− ϕ(t))

]∣∣∣ ≤ EQ

[
|EQ

[
eit

′Bn|Fn

]
− ϕ(t)|

]
= o(1).

To see this, note that the integrand is op(1) by our work above. It is also bounded
so it converges to zero in L1(Q) by Lemma C.9. The final equality since An ∈
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Fn = σ(W1:n, πn) and the marginal distribution of (W1:n, πn) is identical under P
and Q by definition. Then EQ

[
eit

′An
]
= EP

[
eit

′An
]
= e−t

′Vϕt/2 + o(1) by vanilla
CLT. Then we have shown

EQ

[
eit

′Xn
]
= e−t

′(Vϕ+Va)t/2E[eit
′γ′0Zh|Zh ∈ B] + o(1).

This finishes the proof of (b).

A.2 Proof of Main Results

Next, we prove Theorem 3.5 and Corollary 3.7. See Section C.2 below for the proof
of the following lemma, which uses a novel ULLN for GMM estimation under fine
stratification.

Lemma A.7 (Linearization). Suppose Definition A.2 and Assumption 3.2 hold.
Let Π = −(G′MG)−1G′M . Then

√
n(θ̂ − θn) =

√
nEn[HiΠa(Wi, θ0)] + op(1) and

√
n(θ̂ − θ0) =

√
nEn[Πϕ(Wi, θ0) +HiΠa(Wi, θ0)] + op(1).

Proof of Theorem 3.5. We claim that the conditions of Definition A.2 hold. This
will allow us to apply our general rerandomization asymptotics in Theorem A.6 and
linearization in Lemma A.7. To check part (a), define b(x, y) = b(x) = d(x,A) −
d(x,Ac), where d(x,A) = infs∈Rdh |x − s|2. It’s well known that x → d(x, S) is
continuous for any set S, so b is continuous. The sample and population regions
Tn = T = {x : b(x) ≤ 0}. If b(x) ≤ 0 then d(x,A) = 0, so x ∈ A ∪ ∂A ⊆ A by
closedness. If b(x) > 0 then x ̸∈ A. This shows Tn = A, so {In ∈ Tn} = {In ∈ A}.
Then our criterion is of the form in Definition A.2. For part (b), P (b(Zh) = 0) =

P (Zh ∈ ∂A) = 0 since Leb(∂A) = 0 and by absolute continuity of Zh relative
to Lebesgue measure. We also have P (Zh ∈ T ) = P (Zh ∈ A) > 0 since Zh is
full measure by E[Var(h|ψ)] ≻ 0 and since A has non-empty interior This proves
the claim. Then by Lemma A.7,

√
n(θ̂ − θn) =

√
nEn[HiΠa(Wi, θ0)] + op(1). The

result now follows immediately by Slutsky and Theorem A.6(a), letting a → Πa.
Likewise, Corollary 3.7 follows from Theorem A.6(b), letting ϕ→ Πϕ.

Proof of Corollary 3.6. By Theorem 3.5, sinceA = Rdh we have
√
n(θ̂−θn)|W1:n ⇒

N (0, Va) + R, independent RV’s with Va = v−1
D E[Var(Πa(W, θ0) − γ′0h|ψ)] and

R ∼ γ′0Zh for Zh ∼ N (0, v−1
D E[Var(h|ψ)]). Then N (0, Va)+R ∼ N (0, V ) with V =

Va +Var(γ′0Zh) = v−1
D E[Var(Πa(W, θ0)− γ′0h+ γ′0h|ψ)]− 2v−1

D E[Cov(Πa(W, θ0)−
γ′0h, γ

′
0h|ψ)] = v−1

D E[Var(Πa(W, θ0)|ψ)]. The covariance term is zero by Lemma
C.10. The second statement follows by setting ψ = 1.
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Online Appendix

B Appendix

B.1 Beliefs From Pilot Data

Here, we discuss an alternative to the a priori beliefs in Section 5 that uses pilot
data to specify the set B in a data-driven way. Suppose we have access to a dataset
Dpilot ⊥⊥ (W1:n, D1:n) of size m. Suppose

√
m(γ̂pilot − γ0) ≈ N (0, Σ̂pilot) for some

pilot estimator γ̂pilot, discussed below. Consider forming the Wald region B̂pilot =

{γ : m(γ̂pilot − γ)′Σ̂−1
pilot(γ̂pilot − γ) ≤ cα} using critical value P (χ2

dh
≤ cα) = 1− α

for α ∈ (0, 1). Equivalently, one can write this Wald region as

B̂pilot = γ̂ + c1/2α m−1/2 · Σ̂1/2
pilotB2(0, 1). (B.1)

Viewing this 1 − α confidence region as a belief set, Lemma 5.3 implies that the
corresponding minimax acceptance region is

Âpilot = ϵB̂◦
pilot = {x : |x′γ̂pilot|+

c
1/2
α |Σ̂1/2x|2
m1/2

≤ ϵ}. (B.2)

Note that the acceptance region Âpilot expands as the pilot size m is larger.
This reflects smaller uncertainty about the true parameter γ0, and thus less adver-
sarial worst case imbalance supγ∈B̂pilot |γ

′√n(h̄1 − h̄0)|. Conversely, Âpilot shrinks
as the confidence parameter α and variance estimate Σ̂pilot increase, reflecting
greater uncertainty and a more conservative approach to covariate imbalances.
Our next result shows that rerandomization with acceptance region Âpilot controls
the variance of the residual imbalance RA = γ′0Zh|Zh ∈ Âpilot with high probabil-
ity, marginally over the realizations of the pilot data. The result is an immediate
consequence of Theorem 3.5 and Theorem 5.5.

Corollary B.1 (Pilot Data). Suppose P (γ0 ∈ B̂pilot) ≥ 1 − α, for Dpilot ⊥⊥
(W1:n, D1:n). Let D1:n as in Definition 2.1 with A = Âpilot = ϵB̂◦

pilot. If Assump-
tions 3.1, 3.2 hold, then

√
n(θ̂ − θn)|Dpilot ⇒ v−1

D N (0, E[Var(Ȳ − γ′0h|ψ)]) + RA,
where Var(RA|Dpilot) ≤ ϵ2 with probability ≥ 1− α.

Formally, the pilot estimate of γ0 and Wald region could be constructed as in
Robinson (1988). A simpler practical approach suggested by the theory is to let
γ̂pilot, Σ̂pilot be point and variance estimators from the regression YT ∼ 1 + h+ ψ,
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for the “tyranny of the minority” (Lin (2013)) outcomes YT = (1−p)DY/p+p(1−
D)Y/(1− p), noting that E[YT |W ] = (1− p)Y (1) + pY (0) = Ȳ .

B.2 Comparing Rerandomization Types

MSE Cover CI Width

θn Mod. SR Type θ̂ θ̂adj Pop. Fin. Pop. Fin.

MH 1.00 1.03 0.96 0.99 1.00 0.82
Prop 1.04 1.05 0.95 0.98 1.00 0.81

2 Best1 0.99 1.02 0.96 0.98 1.00 0.81
Best2 0.99 1.07 0.95 0.98 1.00 0.82
Opt1 1.00 1.08 0.95 0.98 1.00 0.82

SATE Opt2 1.01 1.02 0.95 0.98 1.00 0.82

MH 1.00 1.06 0.96 0.98 1.00 0.77
Prop 1.02 1.06 0.95 0.98 1.00 0.77

3 Best1 0.99 1.04 0.96 0.99 1.00 0.77
Best2 1.01 1.11 0.95 0.99 1.00 0.77
Opt1 1.00 1.08 0.95 0.99 1.00 0.77
Opt2 0.99 1.03 0.96 0.99 1.00 0.77

MH 1.00 1.03 0.97 0.98 1.00 1.00
Prop 0.99 1.01 0.97 0.99 1.00 1.01

2 Best1 1.00 1.03 0.97 0.98 1.00 1.01
Best2 1.04 1.06 0.97 0.97 1.00 1.01
Opt1 1.00 1.03 0.98 0.98 1.00 1.01

CATE Opt2 0.97 1.00 0.98 0.98 1.00 1.01

MH 1.00 1.09 0.97 0.99 1.00 0.81
Prop 0.96 1.03 0.97 0.99 0.99 0.81

3 Best1 1.00 1.08 0.96 0.99 1.00 0.81
Best2 1.02 1.09 0.96 0.99 1.01 0.82
Opt1 1.00 1.08 0.96 0.99 1.00 0.81
Opt2 0.99 1.09 0.97 0.99 1.01 0.82

Table 3: Stratified Rerandomization Types

In Table 3 we compare different types of stratified rerandomization accep-
tance criteria. MH is Mahalanobis rerandomization, as in Table 1. Prop is the
propensity-based rerandomization in Definition 4.6, using Logit L(x) = (1+e−x)−1

and X = (1, w). Designs Opt1 and Opt2 refer to the optimal acceptance regions
in Section 5. The belief sets are both well-specified, with either high uncertainty
B1 = {x : |x − γ0|2 ≤ 1} or low uncertainty B2 = {x : |x − γ0|2 ≤ 1/10}, re-
spectively. In all designs, we set the balance threshold ϵ(α) so P (Zh ∈ A) =

1/500. Finally, in Best1 and Best2 we rerandomize by implementing the best
allocation out of either k = 500 or k = 2500 stratified draws, according to
the minimal Mahalanobis imbalance metric. Note that such “best-of-k” strati-
fied rerandomization designs are not formally covered by our theory.37 In ad-

37Recent work by Wang and Li (2024b) provided the first formal results for “best-of-k” designs
in the case without stratification.
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dition to θn = SATE, we also provide efficiency and inference results for the
treatment effect heterogeneity parameter from Example 3.10. In particular, let
αn = argminαEn[(Yi(1) − Yi(0) − α′(1, r1i))

2]. We define θn to be the coefficient
on r1, denoting θn = CATE in the table. Cover Pop. and CI Width Pop. refer to
inference on the corresponding superpopulation parameter θ0. Next, we summa-
rize a few findings from Table 3. Theorem 4.7 showed that Prop was first-order
equivalent to MH, and this is supported by finite-sample evidence in the table.
We find that best of k style rerandomization and Mahalnobis rerandomization
with acceptance probability α ≈ 1/k are indistinguishable in practice. In partic-
ular, our inference methods also work well for this design. We don’t find major
finite sample efficiency improvements from using the optimal acceptance regions
in Section 5 in this experiment.

B.3 Empirical Application Details

The full set of covariates from the baseline survey in Angrist et al. (2013) used
in our imputation procedure is HS GPA, sex, year in college, mother and fa-
ther’s education, whether survey question 1 was answered correctly, age, native
language, attempted credits, and financial stress. The vector X consists of these
basic covariates and all of their pairwise interactions. As noted in Section 9,
for the ITT potential outcomes we set T̂ (z) = T = Y if Z = z and impute
T̂ (z) = m̂T

z (X) + σ̂Tz (X)ϵz if Z = 1 − z. The function m̂T
z (X) is estimated using

LASSO, regressing TZ/p on X for z = 1 and T (1−Z)/(1−p) on X for z = 0, with
regularization parameter chosen by cross-validation. The variance function σ̂Tz (X)

is estimated by random forests to preserve positivity, regressing (Ti−m̂T
1 (X))2Zi/p

on Xi for z = 1 and (Ti− m̂T
0 (X))2(1−Zi)/(1− p) on Xi for z = 0. The potential

treatments D̂(z) ∈ {0, 1} are imputed similarly, with D̂(z) = D if Z = z and
D̂(z) = 1(m̂D

z (X) + σ̂Dz (X)uz ≥ 1/2) with uz ∼ N (0, 1) and both m̂D
z (X), σ̂Dz (X)

estimated by cross-validated random forests, with estimation procedure identical
to the ITT outcomes above.

C Additional Proofs

C.1 Proof of Conditional CLT

First, we provide a proof of the conditional CLT under P , Theorem A.4 above.

Proof of Theorem A.4. First consider the case dg = 1. Define ui = ai − E[ai|ψi].
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By Lemma A.3 in Cytrynbaum (2024b), since E[a2i ] < ∞ we have
√
nEn[(Di −

p)E[ai|ψi]] = op(1). Then it suffices to study
√
nEn[(Di − p)ui]. To do so, we will

use a martingale difference sequence (MDS) CLT. Fix an ordering l = 1, . . . , n/k

of s(l) ∈ Sn, noting that |Sn| ≤ n/k. Define Ds(l) = (Di)i∈s(l). Define H0,n = Fn

and Hj,n = σ(Fn, Ds(l), l ∈ [j]) for j ≥ 1. Define Dl,n = n−1/2
∑

i∈s(l)(Di − p)ui

and Sj,n =
∑j

i=1Di,n. (1) Claim (Sj,n,Hj,n)j≥1 is an MDS. Adaptation is clear.

E[(Di − p)1(i ∈ s(j))|Hj−1,n] = E[(Di − p)1(i ∈ s(j))|Fn, (Ds(l))
j−1
l=1 ]

= E[(Di − p)1(i ∈ s(j))|Fn] = E[(Di − p)|Fn]1(i ∈ s(j)) = 0.

The second equality sinceDs(j) ⊥⊥ (Ds(l))l ̸=j|Fn. Then we computeE[Zj,n|Hj−1,n] =

n−1/2
∑

i∈s(l) uiE[(Di − p)|Hj−1,n] = 0. This shows the MDS property. (2). Next,
we compute the variance process. By the same argument in (1),

σ2
n ≡

n/k∑
j=1

E[Z2
j,n|Hj−1,n] = n−1

n/k∑
j=1

 ∑
r ̸=t∈s(j)

urutCov(Ds, Dt|Fn) +
∑
i∈s(j)

u2i Var(Di|Fn)


By Lemma C.10 of Cytrynbaum (2024b), we have Cov(Ds, Dt|Fn)1(s, t ∈ s(l)) =

−l(k − l)/k2(k − 1) ≡ c and Var(Di|Fn) = p− p2. Then we may expand σ2
n as

cn−1

n/k∑
j=1

∑
r ̸=t∈s(j)

urut + (p− p2)En[u
2
i ] ≡ cn−1

n/k∑
j=1

vj + (p− p2)En[u
2
i ] ≡ Tn1 + Tn2.

First consider Tn1. Our plan is to apply the WLLN in Lemma C.7 of Cytrynbaum
(2024b) to show Tn1 = op(1). Define Fψ

n = σ(ψ1:n, πn) so that Sn ∈ Fψ
n . For r ̸= t

we have E[urut|ψ1:n, πn] = E[urE[ut|ψ1:n, ur, πn]|ψ1:n, πn] = E[urE[ut|ψt]|ψ1:n, πn] =

0. The second equality follows by applying (A,B) ⊥⊥ C =⇒ A ⊥⊥ C|B with
A = ut, B = ψt and C = (ψ−t, ur, πn). Then E[vj|Fψ

n ] = 0 for j ∈ [n/k]. Next,
observe that for any positive constants (ak)

m
k=1 we have

∑
k ak1(

∑
k ak > c) ≤

m
∑

k ak1(ak > c/m) and ab1(ab > c) ≤ a21(a2 > c) + b21(b2 > c). Then for
cn → ∞ with cn = o(

√
n) we have

|vj|1(|vj| > cn) ≤
∑

r ̸=t∈s(j)

|urut|1

 ∑
r ̸=t∈s(j)

|urut| > cn


≤ k2

∑
r ̸=t∈s(j)

|urut|1(|urut| > cn/k
2) ≤ 2k3

∑
r∈s(j)

u2r1(u
2
r > cn/k

2).
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Then we have

n−1E

 n/k∑
j=1

E[|vj|1(|vj| > cn)|Fψ
n

 ≤ 2k3En
[
E
[
u2i1(u

2
i > cn/k

2)|ψ1:n, πn
]]

≡ An.

Then E[An] = 2k3E[En[E [u2i1(u
2
i > cn/k

2)|ψi]]] = 2k3E[u2i1(u
2
i > cn/k

2)] → 0 as
n→ ∞. The first equality is by the conditional independence argument above, the
second equality is tower law, and the limit by dominated convergence since E[u2i ] ≤
E[a2i ] < ∞ by the contraction property of conditional expectation. Then An =

op(1) by Markov inequality. The conclusion cn−1
∑n/k

j=1 vj = op(1) now follows
by Lemma C.7 of Cytrynbaum (2024b). For Tn2, we have En[u2i ]

p→ E[u2i ] =

E[Var(a|ψ)] by vanilla WLLN. Then we have shown σ2
n

p→ (p− p2)E[Var(a|ψ)].
(3) Finally, we show Lindberg

∑n/k
j=1E[Z

2
j,n1(|Zj,n| > ϵ)|H0,n] = op(1).

Z2
j,n1(|Zj,n| > ϵ) = Z2

j,n1(Z
2
j,n > ϵ2) ≤ n−1

∑
r,t∈s(j)

|urut|1

n−1
∑

r,t∈s(j)

|urut| > ϵ2


≤ k2n−1

∑
r,t∈s(j)

|urut|1
(
|urut| > nϵ2/k2

)
≤ k3n−1

∑
r∈s(j)

u2r1
(
u2r > nϵ2/k2

)
.

Then using the inequality above we compute

E

 n/k∑
j=1

E[Z2
j,n1(|Zj,n| > ϵ)|H0,n]

 ≤ k3E

n−1

n/k∑
j=1

∑
r∈s(j)

E[u2r1
(
u2r > nϵ2/k2

)
|Fψ

n ]


= k3E

[
En
[
E[u2i1

(
u2i > nϵ2/k2

)
|ψi]
]]

= k3E
[
u2i1

(
u2i > nϵ2/k2

)]
= o(1).

The first equality by the conditional independence argument above. The second
equality by dominated convergence. Then

∑n/k
j=1E[Z

2
j,n1(|Zj,n| > ϵ)|H0,n] = op(1)

by Markov. This finishes the proof of the Lindberg condition. Since H0,n = Fn, by
Theorem C.4 in Cytrynbaum (2024b), we have shown thatE[eit

√
nEn[(Di−p)ai]|Fn] =

ϕ(t) + op(1) for ϕ(t) = e−t
2V/2 with V = (p− p2)E[Var(a|ψ)].

Finally, consider dim(a) ≥ 1. Fix t ∈ Rdg and let ā(Wi) = t′a(Wi) ∈ R.
Then we have Xn(t) ≡ X ′

nt = En[(Di − p)a(Wi)]
′t = En[(Di − p)a(Wi)

′t] =

En[(Di − p)ā(Wi)]. By the previous result E[eiXn(t)|Fn]
p→ e−v(t)/2 with variance

v(t) = E[Var(ā|ψ)] = E[Var(t′a|ψ)] = t′E[Var(a|ψ)]t = t′V t. Then we have shown
E[eit

′Xn|Fn] = e−t
′V t/2 + op(1) as claimed.
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C.2 GMM Linearization

This section collects proofs needed for the key linearization result in Lemma A.7.
First, define the following curves and objective functions

g0(θ) = E[ϕ(Wi, θ)], gn(θ) = En[ϕ(Wi, θ)], ĝ(θ) = En[ϕ(Wi, θ)] + En[Hia(Wi, θ)].

H0(θ) = g0(θ)
′Mg0(θ), Hn(θ) = gn(θ)

′Mgn(θ), Ĥ(θ) = ĝ(θ)′Mnĝ(θ)

Define Ĝ(θ) = (∂/∂θ′)ĝ(θ) and Gn(θ) = (∂/∂θ′)gn(θ) and G0(θ) = (∂/∂θ′)g0(θ).
Define G = G0(θ0). For each d ∈ {0, 1}, define gd(W, θ) = g(d,X, S(d), θ).

Lemma C.1 (ULLN). Working under P in Definition A.1:

(a) If Assumption 3.2(b) holds, ∥ĝ − g0∥∞,Θ = op(1), ∥gn − g0∥∞,Θ = op(1),
and g0(θ) is continuous. If also Mn

p→ M then |Hn − H0|∞,Θ = op(1) and
|Ĥ −H0|∞,Θ = op(1).

(b) If Assumption 3.2(c) holds, then there is an open ball U ⊆ Θ with θ0 ∈ U

and ∥Ĝn − G0∥∞,U = op(1) and ∥Gn − G0∥∞,U = op(1). Also, G0(θ) is
continuous on U for G0(θ) = ∂/∂θ′E[ϕ(W, θ)].

Proof. Consider (a). First we show ∥ĝ − g0∥∞,Θ = op(1), modifying the approach
used in the iid setting in Tauchen (1985). It suffices to prove the statement
componentwise. Then without loss assume dg = 1 and fix ϵ > 0. Note also that
ϕ, a are linear combinations of gd for d ∈ {0, 1}, so ϕ and a inherit the properties
in Assumption 3.2. We have (ĝ − gn)(θ) = En[Hia(Wi, θ)]. For each θ ∈ K define
Uθm = B(θ,m−1) and v̄θm(Di,Wi) = supθ̄∈Uθm Hia(Wi, θ). Then v̄θm(Di,Wi) may
be expanded

sup
θ̄∈Uθm

Hia(Wi, θ̄) =
Di

p
sup
θ̄∈Uθm

a(Wi, θ̄) +
1−Di

1− p
sup
θ̄∈Uθm

−a(Wi, θ̄)

= sup
θ̄∈Uθm

a(Wi, θ̄) + sup
θ̄∈Uθm

−a(Wi, θ̄)

+ Hi((1− p) sup
θ̄∈Uθm

a(Wi, θ̄) + p inf
θ̄∈Uθm

a(Wi, θ̄)) ≡ fθm(Wi) +Hirθm(Wi).

In particular, E[v̄θm(Xi)] = E[fθm(Wi)]. Note both expectations exist by the en-
velope condition in Assumption 3.2. By continuity at θ, fθm(Wi) → a(Wi, θ) −
a(Wi, θ) = 0 as m→ ∞. Also |fmθ(Wi)| ≲ supθ̄∈Uθm |a(Wi, θ̄)| ≤ supθ∈Θ |a(Wi, θ)|.
Then by our envelope assumption supm fθm(Wi) ∈ L1(P ), so limmE[v̄θm(Di,Wi)] =

limmE[fθm(Wi)] = 0 by dominated convergence. For each θ, let m(θ) be such that
E[fθm(θ)(Wi)] ≤ ϵ. Then {Uθm(θ) : θ ∈ Θ} is an open cover of Θ, so by compactness
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it admits a finite subcover {Uθl,m(θl)}
L(ϵ)
l=1 ≡ {Ul}L(ϵ)l=1 . Next, for each (θ,m) we claim

En[v̄θm(Di,Wi)] = E[fθm(Wi)]+op(1). We have En[fθm(Wi)] = E[fθm(Wi)]+op(1)

by WLLN since E[fθm(Wi)] <∞ as just shown. Similarly, we have

|rθm(Wi)| = |(1− p) sup
θ̄∈Uθm

a(Wi, θ̄) + p inf
θ̄∈Uθm

a(Wi, θ̄)| ≤ sup
θ̄∈Uθm

|a(Wi, θ̄)| ∈ L1(P ).

Then En[Hirθm(Wi)] = op(1) by Lemma A.2 in Cytrynbaum (2024b). This
proves the claim. Define fl(W ) and rl(W ) to be the functions above evaluated at
(θl,m(θl)). Putting this all together, we have

sup
θ∈K

En[Hia(Wi, θ)] ≤
L(ϵ)
max
l=1

sup
θ∈Ul

En[Hia(Wi, θ)] ≤
L(ϵ)
max
l=1

En[vθlm(θl)(Di,Wi)]

=
L(ϵ)
max
l=1

(E[fθlm(θl)(Wi)] + Tnl) ≤ ϵ+
L(ϵ)
max
l=1

Tnl = ϵ+ op(1).

By symmetry, also supθ∈K −En[Hia(Wi, θ)] ≤ ϵ+op(1). Then supθ∈K |En[Hia(Wi, θ)]| ≤
2ϵ+ op(1). Since ϵ > 0 was arbitrary, this finishes the proof of (1).

Next we show ∥gn − g0∥∞,Θ = op(1). We have (gn − g0)(θ) = En[ϕ(Wi, θ)] −
E[ϕ(W, θ)]. Under our assumptions, |En[ϕ(Wi, θ)] − E[ϕ(W, θ)]|∞,Θ = op(1) and
g0(θ) = E[ϕ(W, θ)] is continuous by Lemma 2.4 of Newey and McFadden (1994).
This proves the second claim. The statement about objective functions now fol-
lows by algebra, since |Ĥ(θ) − Hn(θ)| ≲ |ĝ − gn|∞,Θ||Mn|2|ĝ|∞,Θ + |gn|∞,Θ|Mn −
M |2|ĝ|∞,Θ + |gn|∞,Θ|M |2|ĝ − gn|∞,Θ. We have |gn|∞,Θ, |ĝ|∞,Θ = op(1) + |g0|∞,Θ =

Op(1) since |g0|∞,Θ ≤ E[supθ∈Θ ϕ(W, θ)] < ∞. Also |Mn|2 = Op(1) and |Mn −
M |2 = op(1) by continuous mapping. Taking supθ∈Θ on both sides gives the re-
sult. The proof that |Hn−H0|∞,K = op(1) is identical. By triangle inequality, this
proves the claim. The proof of (2) is similar.

Lemma C.2 (Consistency). Under the distribution P in Definition A.1, if As-
sumption 3.2 holds then θ̂ − θ0 = op(1) and θn − θ0 = op(1).

Proof. By definition, θ̂ = argminθ∈Θ Ĥ(θ). Moreover, gn(θn) = 0 so Hn(θn) = 0

and θn ∈ argminθ∈ΘHn(θ). For (2), since g0(θ0) = 0 uniquely and rank(M) = dg,
then H0(θ) is uniquely minimized at θ0. Then by uniform convergence of Ĥ,Hn

to H0, extremum consistency (e.g. Theorem 2.1 in Newey and McFadden (1994))
implies that θn

p→ θ0 and θ̂ p→ θ0.

Proof of Lemma A.7. By Lemma A.3, it suffices to show the result under P in
Definition A.1. Since θ̂ = argminθ∈Θ Ĥ(θ), we have ∇θĤ(θ̂) = 0, which is
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Ĝ(θ̂)′Mnĝ(θ̂) = 0. By differentiability in Assumption 3.2 and applying Tay-
lor’s Theorem componentwise, for each k ∈ [dg] and some θ̃k ∈ [θ0, θ̂] we have
ĝ(θ̂) = ĝ(θ0) +

∂ĝk
∂θ′

(θ̃k)
dg
k=1(θ̂ − θ0). Arguing exactly as in Newey and McFadden

(1994), we find
√
n(θ̂−θ0) = −(G′MG)−1G′M

√
nĝ(θ0)+op(1) = Π

√
nĝ(θ0)+op(1).

This proves the second statement of Lemma A.7. For the first statement, we
substitute θn, Hn, Gn for θ̂, Ĥ, Ĝ in the Newey and McFadden (1994) argument,
obtaining

√
n(θn − θ0) = Π

√
ngn(θ0) + op(1). Then we have

√
n(θ̂ − θn) =

√
n(θ̂−θ0+θ0−θn) = Π

√
n(ĝ(θ0)−gn(θ0))+op(1) = Π

√
nEn[Hia(Wi, θ0)]+op(1).

This finishes the proof.

C.3 Nonlinear Rerandomization

Proof of Theorem 4.3. We first prove a slightly more general result, allowing for
over-identified GMM estimation with positive definite weighting matrix ∆n

p→ ∆.
For |x|22,A = x′Ax, define β̂d ∈ argmin

β∈Rdβ |En[1(Di = d)m(Xi, β)]|22,∆n . Define
g1(D,X, β) = Dm(X, β) and g0(D,X, β) = (1 − D)m(X, β). Under the expan-
sion in Equation 3.1, we have ϕ1(X, β) = pg1(1, X, β) = pm(X, β) and a1(X, β) =
vDg

1(1, X, β) = vDm(X, β). Similarly, ϕ0(X, β) = (1 − p)g0(0, X, β) = (1 −
p)m(X, β) and a0(X, β) = −vDg0(0, X, β) = −vDm(X, β). Note that E[g1(D,X, β)] =
pE[m(X, β)] and E[g0(D,X, β)] = (1 − p)E[m(X, β)], so the GMM parame-
ters β1 = β0 = β∗, where β∗ uniquely solves E[m(X, β∗)] = 0. Let Gm =

E[(∂/∂β′)m(X, β∗)], full rank by assumption. ThenG1 = E[(∂/∂β′)g1(D,X, β∗)] =

pE[(∂/∂β′)m(X, β∗)] = pGm and Π1 = −((G1)′∆G1)−1(G1)′∆ = −p−1(G′
m∆Gm)

−1G′
m∆ ≡

p−1Πm. By symmetry, we have Π0 = (1− p)−1Πm. Observe that

(Π1ϕ1 − Π0ϕ0)(X, β) = p−1Πmpm(X, β)− (1− p)−1Πm(1− p)m(X, β) = 0,

(Π1a1 − Π0a0)(X, β) = p−1ΠmvDm(X, β)− (1− p)−1ΠmvD(−m(X, β))

= (1− p)Πmm(X, β) + pΠmm(X, β) = Πmm(X, β).

Then applying Lemma A.7 to GMM estimation using g1 and g0, under the measure
P in Definition A.1 we have

√
n(β̂1 − β̂0) =

√
n(β̂1 − β∗ − (β̂0 − β∗)) =

√
nΠ1En[ϕ

1(Xi, β
∗) +Hia

1(Xi, β
∗)]

−
√
nΠ0En[ϕ

0(Xi, β
∗) +Hia

0(Xi, β
∗)] + op(1) =

√
nΠmEn[Him(X, β∗)] + op(1).

Then Definition 4.1 is an example of Definition 2.1 with In =
√
nEn[Hihi] + op(1)

for hi = Πmm(Xi, β
∗). Then Theorem 3.5 holds with hi = Πmm(Xi, β

∗). Consider
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the exactly identified case, so Πm = −G−1
m and hi = −G−1

m m(Xi, β
∗). Then by

Theorem 3.5,
√
n(θ̂ − θn)|W1:n ⇒ N (0, Va) + RA. Denote Πa = Πa(W, θ0) and

m = m(X, β∗). Then the rerandomization coefficient γ0 is

γ0 = E[Var(h|ψ)]−1E[Cov(h,Πa|ψ)] = −E[Var(G−1
m m|ψ)]−1E[Cov(G−1

m m,Πa|ψ)]

= −E[G−1
m Var(m|ψ)(G−1

m )′]−1E[G−1
m Cov(m,Πa|ψ)]

= −G′
mE[Var(m|ψ)]−1E[Cov(m,Πa|ψ)].

Then Va = v−1
D E[Var(Πa− γ′0(−G−1

m m)|ψ)] = v−1
D E[Var(Πa− γ′0m)|ψ)], where

γ0 = argmin
γ∈Rdβ×dθ

v−1
D E[Var(Πa− γ′m|ψ)].

From above, we have γ0 = −G′
mγ0. Then the residual term

RA ∼ γ′0Zh |Zh ∈ A ∼ −γ′0GmZh |Zh ∈ A ∼ −γ′0GmZh | (−G−1
m )(−Gm)Zh ∈ A

∼ γ′0Zm | −G−1
m Zm ∈ A ∼ γ′0Zm |Zm ∈ −GmA.

Zh ∼ N (0, v−1
D E[Var(h|ψ)]), so Zm = GmZh ∼ N (0, v−1

D GmE[Var(h|ψ)]G′
m) ∼

N (0, v−1
D E[Var(Gmh|ψ)]) ∼ N (0, v−1

D E[Var(m|ψ)]) since Gmh = GmG
−1
m m =

m(X, β∗). Summarizing, we have shown Va = v−1
D E[Var(Πa− γ′0m|ψ)] and RA ∼

γ′0Zm |Zm ∈ GmA for Zm ∼ N (0, v−1
D E[Var(m|ψ)]).

For the corollary, consider letting β̂ ∈ argmin
β∈Rdβ |En[m(Xi, β)]|22,∆n . Relative

to the expansion in Equation 3.1, am(Xi, β) = 0 and ϕm(Xi, β) = m(Xi, β),
with linearization matrix Πm as above. Then by Lemma A.7

√
n(β̂ − β∗) =

ΠmEn[m(Xi, β
∗)] + op(1) = Op(1). Consider setting hi = m(Xi, β̂). By the mean

value theorem, m(Xi, β̂) − m(Xi, β
∗) = ∂m(Xi,β̃i)

∂β
(β̂ − β∗), where the β̃i ∈ [β∗, β̂]

may change by row. Then we have

√
nEn[Him(Xi, β̂)]−

√
nEn[Him(Xi, β

∗)] = En[Hi(∂/∂β
′)m(Xi, β̃i)]

√
n(β̂ − β∗).

We claim that En[Hi(∂/∂β
′)m(Xi, β̃i)] = op(1). Let U open s.t.E[supβ∈U |m(Xi, β)|F ] <

∞ and define Sn = {β̂ ∈ U}. Then by consistency En[Hi(∂/∂β
′)m(Xi, β̃i)]1(S

c
n) =

op(1). Define vnijk = 1(Sn)((∂/∂β
′)m(Xi, β̃i))jk. By the definition of β̂, clearly

vnijk ∈ Fn = σ(W1:n, πn). Moreover, we have |vnijk| ≤ supβ∈U |(∂/∂β′)m(Xi, β)|F ∈
L1 by definition of Sn and β̃i ∈ [β∗, β̂] for each n, so by domination (vnijk)n is uni-
formly integrable, so En[Hiv

n
ijk] = op(1) by Lemma A.2 of Cytrynbaum (2024b).

This proves the claim, showing that In =
√
nEn[Him(Xi, β̂)] =

√
nEn[Him(Xi, β

∗)]+
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op(1). Note that In ∈ ĜmA ⇐⇒ Ĝ−1
m In ∈ A and Ĝ−1

m In = Ĝ−1
m

√
nEn[Him(Xi, β

∗)]+

op(1) = G−1
m

√
nEn[Him(Xi, β

∗)]+op(1). The result follows from Theorem 3.5.

Assumption C.3 (Propensity Rerandomization). Impose the following:

(a) Let L be twice differentiable, with |L′|∞, |L′′|∞ < ∞. For each p ∈ (0, 1),
there is a unique c with L(c) = p. Also, |L′(c)| > 0.

(b) The score m(Di, Xi, β) = Di
L′(X′

iβ)Xi
L(X′

iβ)
− (1−Di)

L′(X′
iβ)Xi

1−L(X′
iβ)

satisfies condition
3.2. The solution to Equation 4.3 exists.

(c) X = (1, h) for E[|h|22] <∞. Also, E[Var(h|ψ)], Var(h) are full rank.

Proof of Theorem 4.7. By assumption, β̂ is a GMM estimator for m(Di, Xi, β) =

Di
L′(X′

iβ)Xi
L(X′

iβ)
− (1 − Di)

L′(X′
iβ)Xi

1−L(X′
iβ)

. Let c such that L(c) = p. Then β∗ = (c, 0) has
E[m(D,X, β∗)] = E[HiL

′(c)Xi] = 0. Relative to the decomposition in Equation
3.1, we have ϕ(X, β) = p

L′(X′
iβ)Xi

L(X′
iβ)

− (1− p)
L′(X′

iβ)Xi
1−L(X′

iβ)
and a(X, β) = vD(

L′(X′
iβ)Xi

L(X′
iβ)

+
L′(X′

iβ)Xi
1−L(X′

iβ)
). Since L(X ′

iβ
∗) = L(c) = p, apparently we have ϕ(X, β∗) = 0 and

a(X, β∗) = L′(c)Xi. It’s easy to see Var(h) ≻ 0 implies E[XX ′] ≻ 0 for X =

(1, h). A calculation shows that Gm = E[ ∂
∂β′ϕ(X, β

∗)] = −v−1
D L′(c)2E[XiX

′
i], so

Πm = −G−1
m = vD

L′(c)2
E[XiX

′
i]
−1. By Lemma A.7, we have shown

√
n(β̂ − β∗) =

√
nΠmEn[ϕ(Xi, β

∗) +Hia(Xi, β
∗)] + op(1)

= vD

√
n

L′(c)
E[XiX

′
i]
−1En[HiXi] + op(1).

Consider rerandomizing until Jn = nEn[(p − L(X ′
iβ̂))

2] ≤ ϵ2. Then for β∗ s.t.
L(x′β∗) = p, the above quantity is nEn[(L(X ′

iβ̂) − L(X ′
iβ

∗))2]. By Taylor’s The-
orem, L(X ′

iβ̂) − L(X ′
iβ

∗) = L′(ξi)(X
′
iβ̂ − X ′

iβ
∗) = L′(ξi)X

′
i(β̂ − β∗) for some

ξi ∈ [X ′
iβ

∗, X ′
iβ̂]. Then we have

Jn = n(β̂ − β∗)′En[XiX
′
iL

′(ξi)
2](β̂ − β∗).

Claim thatEn[XiX
′
iL

′(ξi)
2] = En[XiX

′
iL

′(X ′
iβ

∗)2]+op(1). If so, thenEn[XiX
′
iL

′(ξi)
2] =

L′(c)2En[XiX
′
i]+op(1) = L′(c)2E[XiX

′
i]+op(1). To see this, note that |L′(X ′

iβ
∗)2−

L′(ξi)
2| = |L′(X ′

iβ
∗) − L′(ξi)||L′(X ′

iβ
∗) + L′(ξi)| ≤ 2|L′|∞|L′′|∞|X ′

iβ
∗ − ξi|2 ≲

|X ′
iβ

∗ −X ′
iβ̂|2 ≤ |Xi|2|β∗ − β̂|2. Then we have

|En[XiX
′
iL

′(ξi)
2]− En[XiX

′
iL

′(X ′
iβ

∗)2]|2 ≤ En[|Xi|22|L′(X ′
iβ

∗)2 − L′(ξi)
2|]

≲ En[|Xi|32]|β∗ − β̂|2 = op(1)
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The last equality if En[|Xi|32] = op(n
1/2). Note that En[|Xi|32] ≤ En[|Xi|22] maxni=1 |Xi|2 =

Op(1)op(n
1/2) since E[|Xi|22] < ∞ by assumption, using Lemma C.8 of Cytryn-

baum (2024b). Using the claim,
√
n(β̂ − β∗) = Op(1), and the linear expansion of

√
n(β̂ − β∗), Jn = L′(c)2n(β̂ − β∗)′E[XiX

′
i](β̂ − β∗) + op(1), which is

= v2DL
′(c)2(L′(c)−1E[XiX

′
i]
−1
√
nEn[HiXi])

′E[XiX
′
i]

× (L′(c)−1E[XiX
′
i]
−1
√
nEn[HiXi]) + op(1)

= v2D
√
nEn[HiXi]

′E[XiX
′
i]
−1
√
nEn[HiXi] + op(1).

Note En[Hi] = Op(n
−1) by stratification. Since X = (1, h),

√
nEn[HiXi]

′ =

(0,
√
nEn[Hihi]

′)+Op(n
−1/2). Also, by block inversion (E[XiX

′
i]
−1)hh = Var(hi)

−1.
For some ξn = op(1)

Jn = v2D(0,
√
nEn[Hihi]

′)E[XiX
′
i]
−1(0,

√
nEn[Hihi]

′)′ + op(1)

= v2D
√
nEn[Hihi]

′(E[XiX
′
i]
−1)hh

√
nEn[Hihi] + op(1)

= v2D
√
nEn[Hihi]

′Var(hi)
−1
√
nEn[Hihi] + ξn.

Define the function b(x, y) = v2Dx
′Var(h)−1x + y − ϵ. Then Jn ≤ ϵ ⇐⇒

b(In, ξn) ≤ 0 for In =
√
nEn[Hihi] and ξn

p→ 0. Clearly, x→ b(x, 0) is continuous.
Also note E[|h|22] < ∞ by assumption. Finally, for Zh ∼ N (0, E[Var(h|ψ)]),
have P (b(Zh, 0) = 0) = P (Z ′

hVar(h)
−1Zh = ϵ2) = 0 since E[Var(h|ψ)] is full rank.

Then this rerandomization satisfies all the conditions in Definition A.2. By Lemma
A.7, the GMM estimator

√
n(θ̂ − θ0) =

√
nEn[HiΠa(Wi, θ0)] + op(1) under this

rerandomization. By Theorem A.6, have
√
nEn[HiΠa(Wi)]|Fn ⇒ N (0, Va) + R

with residual variable

R ∼ γ′0Zh|Zh ∈ T ∼ γ′0Zh|v2D · Z ′
hVar(h)

−1Zh ≤ ϵ

for acceptance region T = {x : b(x, 0) ≤ 0} = {x : v2D · x′ Var(h)−1x ≤ ϵ} and

Va = min
γ∈Rdh×dθ

v−1
D E[Var(Πa(W )− γ′h|ψ)].

This finishes the proof.

C.4 Covariate Adjustment

Proof of Proposition 6.2. Since θ̂adj = θ̂ − En[Hiα̂
′wi] for α̂ p→ α and En[Hiwi] =

Op(n
−1/2) by Theorem A.4, then θ̂adj = θ̂−En[Hiα

′wi]+op(n
−1/2) = En[Hi(Πa(Wi, θ0)−
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α′wi)] + op(n
−1/2), the final equality by Lemma A.7. The first statement now fol-

lows from Slutsky and Theorem A.4. The second statement follows by the same
argument used in the proof of Corollary 3.7.

Proof of Theorem 6.3. By the same argument in the proof of Proposition 6.2,
we have θ̂adj = En[Hi(Πa(Wi, θ0) − α′

0wi)] + op(n
−1/2). Then by Theorem A.6,

√
n(θ̂adj − θn)|Fn ⇒ N (0, V ) +R, independent with

V = v−1
D E[Var(Πa(W )−α′

0w−β′
0h|ψ)] = min

β∈Rdh×dθ
v−1
D E[Var(Πa(W )−α′

0w−β′h|ψ)].

The residual term R ∼ β′
0Zh |Zh ∈ A. Then it suffices to show that β0 = 0.

Define aΠα = Πa(W, θ0)−α′
0w. By Lemma C.10, it further suffices to show β0 = 0

solves E[Var(h|ψ)]β0 = E[Cov(h, aΠα|ψ)], i.e. that E[Cov(h, aΠα|ψ)] = 0. To do
so, note that E[Cov(h, aΠα|ψ)] = E[Cov(h, (Πa − α′

0w)|ψ)] = E[Cov(h,Πa|ψ)] −
E[Cov(h,w|ψ)]α0. By assumption, E[Var(w|ψ)]α0 = E[Cov(w,Πa|ψ)]. Since
h ⊆ w, we have

E[Cov(h,w|ψ)]α0 = (E[Var(w|ψ)])hwα0 = (E[Var(w|ψ)]α0)hθ

= (E[Cov(w,Πa|ψ)])hθ = E[Cov(h,Πa|ψ)]

This shows that [Cov(h, aΠα|ψ)] = 0, so β0 = 0 is a solution, proving the claim.
This finishes the proof of the statement for θn. The result for θ0 follows as in
Corollary 3.7.

In Section 7, we defined βd = E[Var(w|ψ)]−1E[Cov(w, vDΠgd(W, θ0)|ψ)] and
estimator β̂d = vDEn[w̌iw̌

′
i]
−1Covn(w̌i, Π̂ĝi|Di = d). By definition α0 = β1−β0 and

α̂ = β̂1− β̂0. Then for Theorem 6.4, apparently it suffices to show β̂d = βd+op(1).

Theorem C.4 (Adjustment Coefficients). Suppose D1:n is as in Definition 2.1.
Require 3.1, 3.2. Assume that E[Var(w|ψ)] ≻ 0. Then β̂d = βd+op(1) for d = 0, 1.

Proof of Theorem C.4. By Lemma A.3, it suffices to show the result under P
in Definition A.1. First consider estimating β1. By Lemma C.5, En[w̌iw̌′

i] =

k−1(k − 1)E[Var(w|ψ)] + op(1). Then if E[Var(w|ψ)] ≻ 0, En[w̌iw̌′
i]
−1 p→ k(k −

1)−1E[Var(w|ψ)]−1 by continuous mapping. Π̂
p→ Π by assumption. Then it

suffices to show

Covn(w̌i, ĝi|Di = 1) = En[(Di/p)w̌iĝ
′
i]− En[w̌i|Di = 1]En[ĝi|Di = 1]

=
k − 1

k
E[Cov(w, g1(θ0)|ψ)] + op(1).
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That En[w̌i|Di = 1] = op(1) can be shown similar to Lemma C.5 below. Then con-
sider the first term. First, claim that En[(Di/p)w̌iĝ

′
i] = En[(Di/p)w̌ig

′
i]+op(1). By

Taylor’s theorem, |gi(θ̂)−gi(θ0)|2 ≤ |∂gi
∂θ′

(θ̃i)|2|θ̂−θ0|2, where θ̃i ∈ [θ0, θ̂] may change
by row. Then using |xy′|2 ≤ |x|2|y|2, we have |En[(Di/p)w̌i(gi(θ̂) − gi(θ0))

′]|2 ≤
En[|w̌i|2|gi(θ̂)−gi(θ0)|2] ≤ |θ̂−θ0|2En[|w̌i|2|∂gi∂θ′

(θ̃i)|2] ≤ |θ̂−θ0|2(En[|w̌i|22]+En[|
∂gi
∂θ′

(θ̃i)|22])
by Young’s inequality. We showed En[|∂gi∂θ′

(θ̃i)|22] = Op(1) in the proof of Lemma
C.7. Similarly, En[|w̌i|22] ≤ En[|wi|22] = Op(1) by the bound in Lemma C.5. Since
|θ̂ − θ0|2 = op(1) by Theorem 3.5, this proves the claim. Next, we calculate

En[(Di/p)w̌ig
′
i] = En[(Di/p)w̌ig

′
1i] = p−1En[(Di − p)w̌ig

′
1i] + En[w̌ig

′
1i]

= En[w̌ig
′
1i] + op(1) = k−1(k − 1)E[Cov(w, g1i|ψ)] + op(1).

The first equality since g1i = g(1, Ri, Si(1), θ0). The third and fourth equalities by
Lemma C.5, since E[|w|22+ |g1|22] <∞ Then we have shown β̂1

p→ β1, and β̂0
p→ β0

by symmetry.

Lemma C.5. Let E[w2
i+v

2
i ] <∞ with wi, vi ∈ σ(Wi). Then under P in Definition

A.1, En[(Di − p)w̌iv̌i] = op(1) and En[(Di − p)w̌ivi] = op(1). Also En[w̌iv̌i] =
k−1
k
E[Cov(w, v|ψ)] + op(1).

We omit the proof, since this is a slight restatement of Lemma A.8 in Cytryn-
baum (2024a).

C.5 Acceptance Region Optimization

Proof of Proposition 5.1. First we prove part (a). Define the function f(a) =

supb∈B |b′a|. As the sup of linear functions, f is convex (e.g. Rockafellar (1996)).
Then the sublevel set A ≡ {a : f(a) ≤ 1} is convex. Note that f(a) = f(−a), so
A is symmetric. For the main statement of the theorem, let an =

√
nEn[Hihi].

Clearly, f is positive homogeneous, i.e. f(λa) = λf(a) for λ ≥ 0. Then note
that the LHS event occurs iff f(an) ≤ ϵ ⇐⇒ f(an/ϵ) ≤ 1 ⇐⇒ an/ϵ ∈
A ⇐⇒ an ∈ ϵ · A. This proves the main statement. Suppose B is bounded.
Then by Cauchy-Schwarz f(a) ≤ |a|2 supb∈B |b|2 < ∞ for any a ∈ Rdh . Then
f is a proper function, so f is continuous by Corollary 10.1.1. of Rockafellar
(1996). Then A = f−1([0, 1]) is closed. Moreover, the open set f−1((1/3, 2/3)) ⊆
f−1([0, 1]) = A, so A has non-empty interior. Suppose that B is open. Then
B contains an open ball B(x, δ) for some x ∈ Rdh and δ > 0. Fix a ∈ Rdh

and define b(a) = x + sgn(a′x) δ
2|a|a. By assumption, b(a) ∈ B. Then f(a) =

13



supb∈B |b′a| ≥ |b(a)′a| = |a′x + sgn(a′x)(δ/2)|a|| = |a′x| + (δ/2)|a| ≥ (δ/2)|a|.
Then f(a) = supb∈B |a′b| ≥ (δ/2)|a|, so A ⊆ B(0, 2/δ).

Proof of Theorem 5.5. First we show the set A0 is feasible in Equation 5.3. We
have LγA = Tγ+γ

′ZhA, where Tγ ∼ N (0, V (γ)) and Tγ ⊥⊥ ZhA. Then bias(LγA|Zh) =
E[LγA|ZhA] = E[Tγ|ZhA]+γ′ZhA = γ′ZhA. For A0 = ϵB◦, supγ∈B | bias(LγA|Zh)| =
supγ∈B |γ′ZhA|. Note ZhA ∈ ϵB◦, so ZhA/ϵ ∈ B◦. Then we have

sup
γ∈B

|γ′ZhA| ≤ ϵ · sup
b∈B◦

sup
γ∈B

|γ′b| ≤ ϵ · 1.

The final inequality by definition of B◦. This shows that A0 is feasible. We
claim A0 is optimal. Suppose for contradiction that there exists A ⊆ Rdh with
Leb(A△A0) ̸= 0 and P (Zh ∈ A) > P (Zh ∈ A0). Clearly A ̸⊆ A0. Then Leb(A \
A0) > 0, so P (Zh ∈ A \ A0) > 0 by absolute continuity. For any x ∈ A \
A0 ⊆ (ϵB◦)c, we must have supγ∈B |γ′x| > ϵ. Then {supγ∈B bias(LγA|Zh) > ϵ} =

{supγ∈B |ZhA| > ϵ} ⊇ {ZhA ∈ A \A0}. B is totally bounded by assumption, so as
in the proof of Proposition 5.1, we have supγ∈B |ZhA| = pB(ZhA) for pB continuous.
Then the event {supγ∈B |ZhA| > ϵ} = {pB(ZhA) > ϵ} is measurable. Then note
P (supγ∈B bias(LγA|Zh) > ϵ) ≥ P (Zh ∈ A \ A0) > 0, which contradicts feasibility
of A, proving the claim.

Proof of Lemma 5.3. For B = x+ ΣBp we compute the upper bound.

sup
b∈B

|a′b| = sup
u∈ΣBp

|a′x+ a′u| ≤ |a′x|+ sup
u∈ΣBp

|a′ΣΣ−1u|

= |a′x|+ sup
v∈Bp

|(Σ′a)′v| = |a′x|+ |Σ′a|q.

Before proceeding, we claim that for any z ∈ Rdh , we have maxv∈Bp v
′z = maxv∈Bp |v′z|.

Clearly maxv∈Bp v
′z ≤ maxv∈Bp |v′z|. Since Bp is compact and v → v′z continu-

ous, v∗ ∈ argmaxv∈Bp |v′z| exists. Then maxv∈Bp |v′z| = |z′v∗| = z′v∗ sgn(z′v∗) =

z′w for w = v∗ sgn(z′v∗) ∈ Bp since v∗ ∈ Bp. Then maxv∈Bp |v′z| = z′w ≤
maxw∈Bp z

′w. This proves the claim. Next, define b(a) = x + sgn(a′x)Σv(a)

with v(a) ∈ argmaxv∈Bp v
′Σ′a, which exists by compactness and continuity. Note

b(a) ∈ B by construction. We may calculate |a′b(a)| = |a′x+sgn(a′x)a′Σv(a)|. By
the claim, a′Σv(a) ≥ 0. Then by matching signs, |a′x+sgn(a′x)a′Σv(a)| = |a′x|+
| sgn(a′x)a′Σv(a)| = |a′x|+ |a′Σv(a)|. By the claim again, this is |a′x|+a′Σv(a) =
|a′x| + maxv∈Bp |a′Σv| = |a′x| + |Σ′a|q. Combining with the upper bound above,
we have shown that supb∈B |a′b| = |a′x|+ |Σ′a|q.
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C.6 Inference

In what follows, recall the within-arm influence functions m1 = vDΠg1 − β′
1w and

m0 = vDΠg0 − β′
0w defined in Section 7.

Proof of Theorem 7.1. By two applications of Cauchy-Schwarz, we can upper bound

|E[Cov(c′m1, c
′m0|ψ)]| ≤ E[Var(c′m1|ψ)1/2Var(c′m0|ψ)1/2]

≤ E[Var(c′m1|ψ)]1/2E[Var(c′m0|ψ)]1/2.

This gives V adj
a (c) ≤ v−1

D (σ̃2
1(c) + σ̃2

0(c) + 2σ̃1(c)σ̃0(c)) = v−1
D (σ̃1(c) + σ̃0(c))

2. The
second equality in the theorem is an algebraic identity.

Proof of Theorem 7.6. By Lemma A.3, it suffices to show the result under P

in Definition A.1. Note that by Lemma C.6 and Lemma C.7, we have û1 =

En[
Di
p
m̂im̂

′
i]−v̂1 = E[m1m

′
1]−E[E[m1|ψ]E[m1|ψ]′]+op(1) = E[Var(m1|ψ)]+op(1),

and similarly û0 = E[Var(m0|ψ)] + op(1). Then v−1
D ([c′û1c]

1/2 + [c′û0c]
1/2)2 =

V̄a(c) + op(1) by continuous mapping. This finishes the proof.

Proof of Theorem 7.8. By Lemma A.3, it suffices to show the result under P in
Definition A.1. Denoting ϕ = ϕ(W, θ0), a = a(W, θ0), we have κi(θ0) = Πgi(θ0)−
Hiα

′
0wi = Π(ϕ+H(a− α′

0wi)). Then we may calculate

Var(κi) = Var(Πϕ) + v−1
D E[(Πa− α′

0w)
2] = Var(Πϕ) + v−1

D E[Var(Πa− α′
0w|ψ)]

+ v−1
D E[E[Πa− α′

0w|ψ]E[Πa− α′
0w|ψ]′].

This shows that Va = Var(κi)− v−1
D E[E[Πa− α′

0w|ψ]E[Πa− α′
0w|ψ]′]. The proof

of Theorem 7.6 showed that α0 = β1 − β0. Also Πa(W, θ0) = vDΠ(g1 − g0)(W, θ0)

by definition. Then Πa(W, θ0)−α′
0w = vDΠg1−β′

1w− (vDΠg0−β′
0w) = m1−m0.

Apparently,

Va = Var(κi)− v−1
D E[E[m1 −m0|ψ]E[m1 −m0|ψ]′]

= Varn(κ̂i)− v−1
D (v̂1 + v̂0 − v̂10 − v̂′10) + op(1).

This finishes the proof.

Lemma C.6. Impose Assumptions 3.1, 3.2, 7.5. Then under P in Definition
A.1, En[Dip m̂im̂

′
i] = E[m1m

′
1]+op(1) and En[1−Di1−p m̂im̂

′
i] = E[m0m

′
0]+op(1). Also,

we have Varn(κ̂i) = Var(κi) + op(1).
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Proof. For (a), consider the first statement. Note that Dim̂i = vDΠ̂Diĝi−Diβ̂
′
1wi

and Dimi = vDΠDigi −Diβ
′
1wi = Dim1i. We can expand En[(Di/p)m̂im̂

′
i] as

En[(Di/p)m̂i(m̂i −mi)
′] + En[(Di/p)(m̂i −mi)m

′
i] + En[(Di/p)mim

′
i].

For the first term, we have En[(Di/p)m̂i(m̂i−mi)
′] = p−1En[Dim̂i(Dim̂i−Dimi)

′].

|Dim̂i −Dimi|2 = |DivDΠ̂ĝi −DivDΠgi −Di(β̂1 − β1)
′wi|2

≲ |Π̂− Π|2|ĝi|2 + |Π|2|ĝi − gi|2 + |β̂1 − β1|2|wi|2.

Then using |xy′|2 ≤ |x|2|y|2 and triangle inequality, the first term above has

|En[Dim̂i(Dim̂i −Dimi)
′]| ≤ |Π̂− Π|2En[|Dim̂i|2|ĝi|2] + |Π|2En[|Dim̂i|2|ĝi − gi|2]

+ |β̂1 − β1|2En[|Dim̂i|2|wi|2].

We claim this term is op(1). Note that |Π̂ − Π|2 = op(1) and |β̂1 − β1|2 = op(1)

by assumption. Then applying Cauchy-Schwarz, it suffices to show En[|Dim̂i|22 +
|ĝi|22+ |wi|22] = Op(1) and En[|ĝi− gi|22] = op(1). First, note En[|wi|22] = Op(1) since
E[|w|22] <∞. Next, note En[|Dim̂i|22] = En[|vDDiΠ̂ĝi −Diβ̂

′
1wi|22] ≤ 2En[|Π̂ĝi|22] +

2En[|β̂′
1wi|22] ≤ 2|Π̂|22En[|ĝi|22]+2|β̂1|22En[|wi|22], so suffices to show En[|ĝi|22] = Op(1).

We start by showing that En[|ĝi − gi|22] = op(1). By the mean value theorem
gi(θ̂)−gi(θ0) = ∂gi

∂θ′
(θ̃i)(θ̂−θ0), where θ̃i ∈ [θ0, θ̂] may change by row. Then we have

En[|gi(θ̂)− gi(θ0)|22] ≤ |θ̂ − θ0|22En[|
∂gi
∂θ′

(θ̃i)|22], so it suffices to show En[|∂gi∂θ′
(θ̃i)|22] =

Op(1). Since gi(θ) = Dig1i(θ) + (1 −Di)g0i(θ) for all θ, |∂gi
∂θ′

(θ̃i)|22 ≤ 2|∂g1i
∂θ′

(θ̃i)|22 +
2|∂g0i

∂θ′
(θ̃i)|22. Define the event Sn = {θ̂ ∈ U}. Then on Sn we have

|∂g1i
∂θ′

(θ̃i)|22 + |∂g0i
∂θ′

(θ̃i)|22 ≤ |∂g1i
∂θ′

(θ̃i)|2F + |∂g0i
∂θ′

(θ̃i)|2F =
∑
d=0,1

dg∑
k=1

|∇gkdi(θ̃ik)|22

≤
∑
d=0,1

dg∑
k=1

sup
θ∈U

|∇gkdi(θ)|22 ≡ Ūi.

Then En[|∂gi∂θ′
(θ̃i)|22]1(Sn) ≤ En[Ūi]1(Sn) = Op(1) since E[supθ∈U |∇gkdi(θ)|22] < ∞

by assumption. Then En[|∂gi∂θ′
(θ̃i)|22] = Op(1) since P (Scn) → 0. This finishes the

proof of En[|ĝi − gi|22] = op(1). Finally, the claim En[|ĝi|22] = Op(1) is clear since
En[|ĝi|22] ≤ 2En[|ĝi − gi|22] + 2En[|gi|22] = op(1) +Op(1) by the preceding claim.

Then we have shown |En[(Di/p)m̂i(m̂i − mi)
′]| = op(1) and En[(Di/p)(m̂i −

mi)m
′
i] = op(1) by an identical argument. This shows that En[(Di/p)m̂im̂

′
i] =
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En[(Di/p)mim
′
i] + op(1). Next, we claim En[(Di/p)mim

′
i] = En[(Di/p)m1im

′
1i] =

En[m1im
′
1i] + op(1) = E[m1im

′
1i] + op(1). The first equality is by definition of

mi(Di,Wi, θ0) and m1i(Wi, θ0). The second equality by Lemma A.2 of Cytryn-
baum (2024b) and the third equality by vanilla WLLN, both using E[|mi|22] <∞.
This finishes our proof of the first statement of (a), and the second statement
follows by symmetry.

Next consider the final statement. Note that κ̂i = Π̂ĝi − Hiα̂
′wi and κi =

Πgi(θ0)−Hiα
′
0wi. Then Diκ̂i = DiΠ̂ĝi−Di(1/p)α̂

′wi, which is of the form studied
above. Then En[Dip κ̂iκ̂

′
i] = E[κ1iκ

′
1i] + op(1) for score κ1i = Πg1i − (1/p)α′

0wi with
Diκi = Diκ1i. Arguing similarly for Di = 0, we have En[κ̂iκ̂′i] = pEn[

Di
p
κ̂iκ̂

′
i] +

(1− p)En[
1−Di
1−p κ̂iκ̂

′
i] = pE[κ1iκ

′
1i] + (1− p)E[κ0iκ

′
0i] + op(1) = E[Diκ1iκ

′
1i] +E[(1−

Di)κ0iκ
′
0i] + op(1) = E[κiκ

′
i] + op(1). Moreover, En[κ̂i] = En[Π̂ĝi − Hiα̂

′wi] =

Π̂En[ĝi]+op(1). Note that En[ĝi] = ĝ(θ̂) and ĝ(θ̂)− ĝ(θ0) = g0(θ̂)−g0(θ0)+op(1) =
op(1). The first equality since |ĝ − g0|Θ,∞ = op(1) and the second by continuous
mapping, using Lemma C.1. Then Varn(κ̂i) = E[κiκ

′
i] + op(1).

Lemma C.7. Require Assumptions 3.1, 3.2, 7.5. Then under P in Definition A.1,
the estimators in the statement of Theorem 7.8 have v̂10

p→ E[E[m1i|ψ]E[m0i|ψ]′],
and v̂1

p→ E[E[m1i|ψ]E[m1i|ψ]′], and v̂0
p→ E[E[m0i|ψ]E[m0i|ψ]′].

Proof. Let v̂o1 the oracle version of v̂1 with mi = vDΠgi(θ0)−Diβ
′
1wi−(1−Di)β

′
0wi

substituted for m̂i, and similarly define oracle versions v̂o0, v̂o10 of v̂0, v̂10. Note
Dimi = Dim1i = Di(vDΠg1i(θ0)− β′

1wi). In Lemma A.6 of Cytrynbaum (2024b),
set Ai = m1i and Bi = m1i. Applying the lemma componentwise gives v̂o1

p→
E[E[m1i|ψ]E[m1i|ψ]′]. Similarly, we have v̂o0

p→ E[E[m0i|ψ]E[m0i|ψ]′], and v̂o10
p→

E[E[m1i|ψ]E[m0i|ψ]′]. Then it suffices to show v̂1 − v̂o1 = op(1), v̂0 − v̂o0 = op(1),
and v̂10 − v̂o10 = op(1). For the first statement, expand

v̂1 − v̂o1 = (np)−1
∑
s∈Sνn

1

a(s)− 1

∑
i ̸=j∈s

DiDj(m̂im̂
′
j −mim

′
j)

Expand m̂im̂
′
j −mim

′
j = m̂i(m̂

′
j −m′

j) + (m̂i−mi)m
′
j ≡ Aij +Bij. Using triangle

inequality, a(s)−1 ≥ 1 and p > 0, we calculate v̂o1− v̂1 ≲ n−1
∑

s∈Sνn

∑
i,j∈s |Aij|2+

|Bij|2 ≡ An +Bn. First consider Bn. Using that |xy′|2 ≤ |x|2|y|2, we have

|Bij|2 ≤ |m̂i −mi|2|mj|2 = |vDΠ̂ĝi − vDΠgi −Di(β̂1 − β1)
′wi − (1−Di)(β̂0 − β0)

′wi|2|mj|2
≤ |Π̂− Π|2|ĝi|2|mj|2 + |Π|2|ĝi − gi|2|mj|2 + 2max

d=0,1
|β̂d − βd|2|wi|2|mj|2.

ThenBn = n−1
∑

s∈Sνn

∑
i,j∈s |Π̂−Π|2|ĝi|2|mj|2+|Π|2|ĝi−gi|2|mj|2+2maxd=0,1 |β̂d−
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βd|2|wi|2|mj|2 ≡ Bn1 +Bn2 +Bn3. Consider Bn1. This is

Bn1 = |Π̂− Π|2 · n−1
∑
s∈Sνn

∑
i,j∈s

|ĝi|2|mj|2 ≤ |Π̂− Π|2 · (2n)−1
∑
s∈Sνn

∑
i,j∈s

|ĝi|22 + |mj|22

≤ |Π̂− Π|2 · (2n)−1
∑
s∈Sνn

|s|
∑
i∈s

|ĝi|22 + |mi|22 ≲ |Π̂− Π|2En[|ĝi|22 + |mi|22].

By an identical argument Bn3 ≲ maxd=0,1 |β̂d − βd|2En[|wi|22 + |mi|22]. Then to
show Bn1 + Bn3 = op(1), suffices to show En[|wi|22 + |mi|22 + |ĝi|22] = Op(1). That
En[|wi|22 + |ĝi|22] = Op(1) was shown in the proof of Lemma C.6. Note En[|mi|22] =
En[|vDΠgi(θ0) − Diβ

′
1wi − (1 − Di)β

′
0wi|22] ≤ 2En[|Πgi|22] + 2En[|Diβ

′
1wi + (1 −

Di)β
′
0wi|22] ≤ 2|Π|22En[|gi|22] + 2maxd=0,1 |βd|22En[|wi|22] = Op(1) since E[|gi|22] < ∞

by assumption. Then Bn1 + Bn3 = op(1). Finally, consider Bn2. By the mean
value theorem gi(θ̂) − gi(θ0) = ∂gi

∂θ′
(θ̃i)(θ̂ − θ0), where θ̃i ∈ [θ0, θ̂] may change by

row. Then we have

Bn2 = n−1
∑
s∈Sνn

∑
i,j∈s

|Π|2|ĝi − gi|2|mj|2 ≤ |θ̂ − θ0|2|Π|2 · n−1
∑
s∈Sνn

∑
i,j∈s

|∂gi
∂θ′

(θ̃i)|2|mj|2

≲ |θ̂ − θ0|2|Π|2En[|
∂gi
∂θ′

(θ̃i)|22 + |mi|22] = op(1).

The final equality follows since En[|∂gi∂θ′
(θ̃i)|22 = Op(1), as shown in the proof of

Lemma C.6. Then we have shown Bn = op(1), and An = op(1) is identical. This
completes the proof that v̂1 − v̂o1 = op(1), and the proof of v̂0 − v̂o0 = op(1), and
v̂10 − v̂o10 = op(1) are identical.

C.7 Lemmas

Proposition C.8 (Lévy). Consider probability spaces (Ωn,Gn, Pn) and σ-algebras
Fn ⊆ Gn. We say An ∈ Rd has An|Fn ⇒ A if ϕn(t) ≡ E[eit

′An|Fn] = E[eit
′A|Fn]+

op(1) for each t ∈ Rd. If g : Rd → C is bounded, measurable, and P (A ∈ {a :

g(·) discontinuous at a}) = 0 then we have

E[g(An)|Fn] = E[g(A)] + op(1). (C.1)

Lemma C.9. Consider probability spaces (Ωn,Gn, Pn) and σ-algebras Fn ⊆ Gn.
Suppose 0 ≤ An ≤ B <∞ and An = op(1). Then E[An|Fn] = op(1).

See Cytrynbaum (2021) for the proofs.

Lemma C.10. The following statements hold
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(a) There exists γ0 ∈ Rdh×da solving E[Var(h|ψ)]γ0 = E[Cov(h, a|ψ)]. For any
solution, we have E[Var(a− γ′0h|ψ)] ⪯ E[Var(a− γ′h|ψ)] for all γ ∈ Rdh×da.

(b) Let Z = (Za, Zh) a random variable with Var(Z) = E[Var((a, h)|ψ)] ≡ Σ and
define Z̃a = Za− γ′0Zh. Then Cov(Z̃a, Zh) = 0. In particular, if (Za, Zh) are
jointly Gaussian, then Z̃a is Gaussian with Z̃a ⊥⊥ Zh.

Proof. In the notation of (b), it suffices to show Σhhγ0 = Σha. If rank(Σhh) = 0

then Zh = ch a.s. for constant ch and Σha = Cov(Zh, Za) = 0. Then any γ ∈
Rdh×da is a solution. Then suppose rank(Σhh) = r ≥ 1. Let Σhh = UΛU ′ be
the compact SVD with U ∈ Rdh×r and rank(Λ) = r, and U ′U = Ir. We claim
Zh = UU ′Zh a.s. Calculate Var((UU ′ − I)Zh) = (UU ′ − I)UΛU ′(UU ′ − I) = 0.
Note that Σhhγ = Σha ⇐⇒ Var(Zh)γ = Cov(Zh, Za) ⇐⇒ Var(UU ′Zh)γ =

Cov(UU ′Zh, Za) ⇐⇒ U [Var(U ′Zh)U
′γ − Cov(U ′Zh, Za)] = 0. Define Z̄h = U ′Zh

and note Var(Z̄h) = U ′UΛU ′U = Λ ≻ 0. Then let γ̄ = Var(Z̄h)
−1Cov(Z̄h, a) so

that Var(Z̄h)γ̄ − Cov(Z̄h, Za) = 0. Then it suffices to find γ such that U ′γ =

γ̄. Since U ′ : Rdh → Rr is onto, there exists γk with U ′γk = γ̄k. Then let
γk0 ∈ [γk + ker(U ′)] and set γ0 = (γk0 : k = 1, . . . , da), so that U ′γ0 = γ̄. Then
Σhhγ0 = Σha by work above. For the optimality statement, calculate

E[Var(a− γ′h|ψ)] = Σaa − Σahγ − γ′Σha + γ′Σhhγ = Σaa − Σah(γ − γ0 + γ0)

− (γ − γ0 + γ0)
′Σha + γ′Σhhγ = Σaa − 2γ′0Σhhγ0 − (γ − γ0)

′Σha − Σah(γ − γ0)

+ γ′Σhhγ ∝ −(γ − γ0)
′Σhhγ0 − γ′0Σhh(γ − γ0) + γ′Σhhγ = −(γ − γ0)

′Σhhγ0

− γ′0Σhh(γ − γ0) + γ′Σhhγ + (γ − γ0 + γ0)
′Σhh(γ − γ0 + γ0)

= γ′0Σhhγ0 + (γ − γ0)
′Σhh(γ − γ0).

Then E[Var(a− γ′h|ψ)]−E[Var(a− γ′0h|ψ)]) = (γ − γ0)
′Σhh(γ − γ0) and for any

a ∈ Rda we have a′(γ−γ0)
′Σhh(γ−γ0)a ≥ 0 since Σhh ⪰ 0. This proves the claim.

Finally, we have Cov(Z̃a, Zh) = Cov(Za − γ′0Zh, Zh) = Σah − γ′0Σhh = 0. The final
statement follows from well-known facts about the normal distribution.

Lemma C.11. An = Op(1) ⇐⇒ An = op(cn) for every sequence cn → ∞.

Proof. It suffices to consider An ≥ 0. The forward direction is clear. For the
backward direction, suppose for contradiction that there exists ϵ > 0 such that
supn≥1 P (An > M) > ϵ for all M . Then find nk such that P (Ank > k) > ϵ for
each k ≥ 1. We claim nk → ∞. Suppose not and lim infk nk ≤ N < ∞. Then
let k(j) → ∞ such that nk(j) ≤ N for all j. Choose M ′ < ∞ such that P (An >
M ′) < ϵ for all n = 1, . . . N . Then for k(j) > M ′ we have P (Ank(j) > k(j)) ≤
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P (Ank(j) > M ′) < ϵ, which is a contradiction. Then apparently limk nk = +∞.
Define Zj = {i : i ≥ j}. Regard the sequence nk as map n : N → N. For
m ∈ Image(n), define n†(m) = minn−1(m). It’s easy to see that n†(mk) → ∞ for
{mk}k ⊆ Image(n) with mk → ∞. Then write

sup
k≥j

P (Ank > k) = sup
m∈n(Zj)

sup
a∈n−1(m)

P (Am > a) ≤ sup
m∈n(Zj)

P (Am > n†(m))

Note Amk/n†(mk) = op(1) by assumption for any {mk}k ⊆ Image(n) with mk →
∞. Then we have

lim sup
k

P (Ank > k) = lim
j

sup
k≥j

P (Ank > k) = lim
j

sup
m∈n(Zj)

P (Am > n†(m)) = o(1).

This is a contradiction, which completes the proof.
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