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Abstract

We study estimation and inference on causal parameters under finely stratified
rerandomization designs, which use baseline covariates to match units into groups
(e.g. matched pairs), then rerandomize within-group treatment assignments until a
balance criterion is satisfied. We show that finely stratified rerandomization does
partially linear regression adjustment “by design,” providing nonparametric control
over the stratified covariates and linear control over the rerandomized covariates.
We introduce several new rerandomization schemes, allowing for imbalance metrics
based on nonlinear estimators. We also propose a novel minimax scheme that uses
pilot data or prior information to minimize the computational cost of rerandom-
ization, subject to a strict bound on statistical efficiency. While the asymptotic
distribution of generalized method of moments (GMM) estimators under stratified
rerandomization is generically non-normal, we show how to restore asymptotic nor-
mality using ex-post linear adjustment tailored to the stratification. This enables
simple asymptotically exact inference on superpopulation parameters, as well as
efficient conservative inference on finite population parameters.
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1 Introduction

Stratified randomization is commonly used to increase statistical precision in experi-
mental research.1 Recent theoretical work (e.g. Bai et al. (2021)) has shown that fine
stratification, which randomizes within small groups of units tightly matched on baseline
covariate information, makes unadjusted estimators like difference of means semipara-
metrically efficient.2 In finite samples, however, the performance of such designs can
deteriorate rapidly with the dimension of the stratification variables due to a curse of
dimensionality in matching.3 This motivates the search for alternative designs that insist
upon nonparametric balance for a few important covariates, but only attempt to bal-
ance linear functions of the remaining variables. In this paper, we study finely stratified
rerandomization designs, which first tightly match the units into groups using a small set
of important covariates, then rerandomize within-groups treatment assignments until a
balance criterion on the remaining covariates is satisfied.

Our first contribution is to derive the asymptotic distribution of generalized method
of moments (GMM) estimators under stratified rerandomization, allowing for estimation
of generic causal parameters defined by moment equalities. We consider both superpopu-
lation and finite population parameters, the latter of which may be more appropriate for
experiments run in a convenience sample (Abadie et al. (2014)). As in previous work on
rerandomization (e.g. Li et al. (2018)), the asymptotic distribution of GMM estimators
is an independent sum of a normal and a truncated normal term. We show that, modulo
this residual truncated term, the asymptotic variance of unadjusted estimation under
stratified rerandomization is the same as that of semiparametrically adjusted GMM (e.g.
Graham (2011)) under an iid design. Intuitively, stratified rerandomization implements
partially linear regression adjustment “by design.”

Our second contribution is to introduce several novel forms of rerandomization based
on nonlinear balance criteria. For example, we allow acceptance or rejection of an al-
location based on the difference of covariate density estimates within each treatment
arm, attempting to balance nonlinear features of the covariate distribution. Similarly,
we propose a design that rerandomizes until a nonlinear estimate of the propensity score
is approximately constant, effectively forcing the covariates to have no predictive power
for treatment assignments. In both cases, these nonlinear rerandomization schemes are
asymptotically equivalent to standard rerandomization based on a difference of covari-
ate means, but with an implicit choice of covariates and acceptance region, which we
characterize.

1For example, Cytrynbaum (2023) reports a survey of 50 experimental papers in the AER and AEJ
from 2018-2023, where 57% used some form of stratified randomization.

2See Cytrynbaum (2024), Armstrong (2022), and Bai et al. (2024) for more detailed discussion.
3Under regularity conditions, the convergence rate of finite sample variance to asymptotic variance is

O(n−2/(d+1)) for dimension d covariates, see Cytrynbaum (2024).
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Our third contribution is to study optimization of the balance criterion itself. We
propose a novel minimax approach that allows the researcher to specify prior information
about the relationship between covariates and outcomes, then rerandomizes until the
worst case correlation between treatments and covariates consistent with this prior is
small. We prove that this design minimizes the (asymptotic) computational cost of
rerandomization, subject to a strict bound on statistical efficiency over the set of DGP’s
consistent with the prior. If the prior information set contains the truth, this design
strictly bounds the asymptotic variance within a small additive factor of the optimal
semiparametrically adjusted variance. Extending this result, we show that if the prior
information set is a confidence region estimated from pilot data, then this minimax design
bounds the asymptotic variance in the main experiment with high probability.

Our fourth contribution is to provide simple t-statistic and Wald based inference meth-
ods for general causal parameters under stratified rerandomization designs. To do this,
we first characterize and provide a feasible implementation of the optimal ex-post linear
adjustment for GMM estimation under stratified rerandomization.4 Crucially, optimal
ex-post adjustment makes the asymptotic distribution insensitive to the rerandomization
acceptance criterion, removing the truncated normal term from the limiting distribu-
tion and restoring asymptotic normality. For superpopulation parameters, our inference
methods are asymptotically exact. For finite population parameters, our inference is
conservative due to non-identification of the asymptotic variance, but still exploits the
efficiency gains from both stratified rerandomization and ex-post optimal adjustment.

1.1 Related Literature

This paper builds on the literature on fine stratification in econometrics as well as the
literature on rerandomization in statistics. Stratified randomization has a long history in
statistics, see Cochran (1977) for a survey. Recent work on fine stratification in econo-
metrics includes Bai et al. (2021), Bai (2022), Cytrynbaum (2024), Armstrong (2022),
and Bai et al. (2024). Some important theoretical contributions to the literature on
rerandomization include Morgan and Rubin (2012) and Li et al. (2018), Wang et al.
(2021), and Wang and Li (2022). We build on both of these literatures, studying the
consequence of rerandomizing treatments within data-adaptive fine strata. We show that
finely stratified rerandomization does semiparametric (partially linear) regression adjust-
ment “by design,” providing nonparametric control over a few important variables and
linear control over the rest.

For our main asymptotic theory (Section 3), the most closely related previous work
is Wang et al. (2021) and Bai et al. (2024). Wang et al. (2021) study estimation of the

4This extends recent work on optimal adjustment under pure stratified randomization for ATE esti-
mation, e.g. see Cytrynbaum (2023), Bai et al. (2023), or Liu and Yang (2020).
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sample average treatment effect (SATE) under stratified rerandomization, with quadratic
imbalance metrics based on the Mahalanobis norm. We study rerandomization within
data-adaptive fine strata, providing asymptotic theory for generic superpopulation and
finite population causal parameters defined by moment equalities. We also allow for essen-
tially arbitrary rerandomization acceptance criteria, not necessarily based on quadratic
forms. Bai et al. (2024) study estimation of superpopulation parameters defined by mo-
ment equalities under pure stratified randomization. We extend these results to stratified
rerandomization as well as generic finite population parameters, providing “SATE-like”
versions of the parameters in Bai et al. (2024).5 In concurrent work, Wang and Li (2024)
study GMM estimation of univariate superpopulation parameters under stratified reran-
domization with fixed, discrete strata. We study significantly more general forms of
stratification and rerandomization criteria than considered in their work, allowing for
both finite and superpopulation parameters of arbitrary dimension and fine stratification
with continuous covariates.

For nonlinear rerandomization (Section 4), the closest related results are Ding and
Zhao (2024) and Li et al. (2021). Ding and Zhao (2024) rerandomize based on the p-value
of a logistic regression coefficient, while we rerandomize until a general smooth propen-
sity estimate is close to constant. To the best of our knowledge, we present the first
asymptotic theory for rerandomization based on the difference of nonlinear (e.g. density)
estimates. For acceptance region optimization (Section 5), the closest related results are
Schindl and Branson (2024), who study the optimal choice of norm for quadratic reran-
domization, while Liu et al. (2023) chooses a specific quadratic rerandomization using a
Bayesian criterion, in both cases for rerandomization without stratification. We provide
a novel minimax approach that accepts or rejects based on the value of a convex penalty
function, tailored to prior information provided by the researcher. Our work on optimal
adjustment (Section 6) extends recent work on adjustment for stratified designs, e.g. Liu
and Yang (2020), Cytrynbaum (2023), Bai et al. (2023), to stratified rerandomization
and GMM parameters. Finally our inference methods (Section 7) build on previous work
by Abadie and Imbens (2008), Bai et al. (2021), and Cytrynbaum (2024). To the best
of our knowledge we provide the first asymptotically exact inference for causal GMM
parameters under stratified rerandomization, as well as conservative inference for their
finite population analogues.

2 Framework and Designs

Consider data Wi = (Ri, Si(1), Si(0)) with (Wi)
n
i=1

iid∼F . The Si(d) ∈ RdS denote potential
outcome vectors for a binary treatment d ∈ {0, 1}, while Ri denote other pre-treatment

5These parameters can be seen as causal versions of the conditional estimand defined in Abadie et al.
(2014).
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variables, such as covariates. For treatment assignmentsDi ∈ {0, 1}, the realized outcome
Si = Si(Di) = DiSi(1) + (1−Di)Si(0). In what follows, for any array (ai)

n
i=1 we denote

En[ai] = n−1
∑n

i=1 ai, with ā1 = En[aiDi]/En[Di] and ā0 = En[ai(1 − Di)]/En[(1 − Di)]

Next, we define stratified rerandomization designs.

Definition 2.1 (Stratified Rerandomization). Let treatment proportions p = l/k and
suppose that n is divisible by k for notational simplicity.

(1) (Stratification). Partition the experimental units into n/k disjoint groups s with
{1, . . . , n} =

⋃
s s disjointly and |s| = k. Let ψ = ψ(R) with ψ ∈ Rdψ denote a

vector of stratification variables, which may be continuous or discrete. Suppose the
groups satisfy the homogeneity condition6

1

n

∑
s

∑
i,j∈s

|ψi − ψj|22 = op(1). (2.1)

Require that the groups only depend on the stratification variables ψ1:n and data-
independent randomness πn, so that s = s(ψ1:n, πn) for each s.

(2) (Randomization). Independently for each |s| = k, draw treatment variables (Di)i∈s

by setting Di = 1 for exactly l out of k units, uniformly at random.

(3) (Check Balance). For rerandomization covariates h = h(R), consider an imbalance
metric In =

√
n(h̄1 − h̄0) + op(1).7 For an acceptance region A ⊆ Rdh , check if the

balance criterion In ∈ A is satisfied. If so, accept D1:n. If not, repeat from the
beginning of (2).

Intuitively, steps (1) and (2) describe a data-adaptive “matched k-tuples” design, while
step (3) rerandomizes within k-tuples until the balance criterion is satisfied. Equation
2.1 is a tight-matching condition, requiring that the groups are clustered locally in ψ

space. Cytrynbaum (2024) provides algorithms to match units into groups that satisfy
this condition for any fixed k.

Example 2.2 (Matched Pairs Rerandomization). For k = 2, the optimal matched pairs
in Equation 2.1 can be found by Derigs (1988) algorithm. Suppose we have done so, and
consider rerandomizing until the imbalance criterion n(X̄1 − X̄0)

′Σn(X̄1 − X̄0) ≤ ϵ2 is
satisfied for positive-definite Σn

p→ Σ.8 Let In ≡ Σ
1/2
n

√
n(X̄1−X̄0) =

√
n(h̄1− h̄0)+op(1)

for modified covariates h = Σ1/2X. This quadratic acceptance criterion is equivalent to
6The matching condition in Equation 2.1 was introduced by Bai et al. (2021) for matched pairs

randomization (k = 2). See Bai (2022) and Cytrynbaum (2024) for generalizations.
7In particular, we require In =

√
n(h̄1− h̄0)+ op(1) under “pure” stratified randomization, the design

in steps (1) and (2) only, studied e.g. in Cytrynbaum (2024). We give several examples below.
8Several recent papers in the statistics literature have considered such criteria. See e.g. Morgan and

Rubin (2012), Li et al. (2018), Wang et al. (2021) among others.
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In ∈ A for acceptance region A = {x : |x|2 ≤ ϵ}. We study the efficiency consequences
of different covariates and acceptance regions in detail in Sections 3 and 5 below.

Example 2.3 (Stratification). Stratification without rerandomization can be obtained
by setting A = Rdh in Definition 2.1. Treatment effect estimation under such designs was
studied in Bai (2022), Cytrynbaum (2024), and Bai et al. (2024). Definition 2.1 allows for
fine stratification (also known as matched k-tuples), with the number of data-dependent
groups s = s(ψ1:n, πn) growing with n. It also allows for coarse stratification with fixed
strata T ∈ {1, . . . ,m} and fixed m, as in Bugni et al. (2018), which can be obtained in
this framework by setting ψ = T and matching units into groups s at random within
each {i : Ti = k}.

Example 2.4 (Complete Randomization). For p = l/k, we say that D1:n are completely
randomized with probability p if P (D1:n = d1:n) = 1/

(
n
np

)
for all d1:n with

∑
i di = np.9 If

so, we denote D1:n ∼ CR(p). Cytrynbaum (2024) shows that CR(p) randomization can
be obtained by setting ψ = 1 and A = Rdh in Definition 2.1, matching units into groups at
random. Intuitively, random matched k-tuples is equivalent to complete randomization.

Causal Estimands. Next, we introduce a generic family of causal estimands defined
by moment equalities. Let g(D,R, S, θ) ∈ Rdg be a score function for generalized method
of moments (GMM) estimation. Recall W = (R, S(1), S(0)) and for D|W ∼ Bernoulli(p)

define ϕ(W, θ) = E[g(D,R, S, θ)|W ] = pg(1, R, S(1), θ) + (1 − p)g(0, R, S(0), θ). By
construction, we have E[ϕ(W, θ)] = 0 ⇐⇒ E[g(D,R, S, θ)] = 0. The function ϕ(W, θ)

provides a convenient parameterization to introduce our causal estimands.

Definition 2.5 (Causal Estimands). The superpopulation estimand θ0 is the unique
solution to E[ϕ(W, θ)] = 0. The finite population estimand θn is the unique solution to
En[ϕ(Wi, θ)] = 0.

In what follows, we study GMM estimation of both θ0 and θn under stratified reran-
domization designs, showing an asymptotic equivalence between stratified rerandomiza-
tion and partially linear covariate adjustment. In particular, this framework allows us
to introduce several useful finite population estimands θn that do not appear to have
been considered previously in the literature. Note that GMM estimation of θ0 under
pure stratification was studied in Bai et al. (2024) for the exactly identified case. Our
finite population parameter θn can be viewed as a causal version of the finite population
estimand defined in Abadie et al. (2014).10

Example 2.6 (ATE). Define the Horvitz-Thompson weightsH = D−p
p−p2 and let g(D, Y, θ) =

HY −θ, so that ϕ(W, θ) = E[HY |W ]−θ = Y (1)−Y (0)−θ. Then θ0 = E[Y (1)−Y (0)] =

9For notational simplicity, we may assume that n = lk for some l ∈ N.
10See also the related finite population estimands studied under iid sampling and assignment in Xu

(2021) and Kakehi and Otsu (2024).
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ATE, the average treatment effect, and θn = En[Yi(1) − Yi(0)] = SATE, the sample av-
erage treatment effect.

For a more interesting example, consider the best parametric predictor of treatment
effect heterogeneity in experiments with noncompliance.

Example 2.7 (LATE Heterogeneity). Let D(z) be potential treatments for a binary
instrument z ∈ {0, 1}. Let Y (d) be the potential outcomes, with realized outcome Y =

Y (D(Z)). Suppose D(1) ≥ D(0), and define compliance indicator C = 1(D(1) > D(0)),
assuming E[C] > 0. Imbens and Angrist (1994) define the local average treatment effect
LATE = E[Y (1)−Y (0)|C = 1]. Let H = (Z−p)/(p−p2) and consider the score function
g(Z,D, Y,X, θ) = (HY −HD · f(X, θ))∇θf(X, θ). Using standard LATE manipulations,

ϕ(W, θ) = E[g(Z,D, Y,X, θ)|W ] = C · (Y (1)− Y (0)− f(X, θ))∇θf(X, θ).

Then E[ϕ(W, θ)] = 0 is the first order condition of a treatment effect prediction problem
in the complier population. In particular, for τ ≡ Y (1) − Y (0), the parameter θ0 is the
best parametric predictor of treatment effects for compliers:

θ0 = argmin
θ

E[(τ − f(X, θ))2|C = 1].

For example, if Y is binary then Y (1)−Y (0) ∈ {−1, 0, 1}, so a scaled link function model
f(X, θ) = 2L(X ′θ) − 1 may be appropriate. We can easily estimate marginal effects by
adding m(Xi, θ, β) = β − (∂/∂θ′)f(Xi, θ) to the score function.

Example 2.8 (Finite Population Heterogeneity). Continuing Example 2.7, note that for
τi = Yi(1)− Yi(0) the corresponding finite population parameter is

θn = argmin
θ

En[(τi − f(Xi, θ))
2|Ci = 1]. (2.2)

We can view θn as a “SATE-like” version of θ0, the best parametric predictor of treat-
ment effects in the within-sample complier population. θn may be a more appropri-
ate target for experiments run in a convenience sample. If f(X, θ) = X ′θ linear, then
θn = argminθ En[(τi − X ′

iθ)
2|Ci = 1] is the within-sample best linear predictor. In the

case of perfect compliance Ci = 1 for all i, this is θn = argminθ En[(τi −X ′
iθ)

2], a finite-
sample version of the best linear predictor of the conditional average treatment effect
(CATE). The case X = 1 recovers θn = En[Yi(1) − Yi(0)|Ci = 1], the finite-population
LATE, studied e.g. in Ren (2023). Our inference methods in Section 7 produce tighter
confidence intervals for these finite population parameters than θ0, since we only need to
account for the uncertainty due to random assignment, with no sampling uncertainty.

GMM Estimation. Let positive-definite weighting matrix Mn ∈ Rdg×dg with Mn
p→
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M ≻ 0. For sample moment ĝ(θ) ≡ En[g(Di, Ri, Si, θ)], the GMM estimator11 is

θ̂ = argmin
θ∈Θ

ĝ(θ)′M ′
nĝ(θ). (2.3)

In the exactly identified case, θ̂ solves ĝ(θ̂) = 0. In the next section, we study generalized
method of moments (GMM) estimation of the causal parameters θ0 and θn under stratified
rerandomization.

Remark 2.9 (M-estimation). Our results below also extend to M-estimators of the form
θ̂ = argmaxθ En[m(Di, Ri, Si, θ)], even when θ̂ cannot be formulated as a GMM estimator
e.g. due to the existence of local maxima. For example, this happens in some nonconvex
problems in density estimation (Newey and McFadden (1994)). We briefly discuss this
extension in Section 8.4.

3 Asymptotics for GMM Estimation

In this section, we characterize the asymptotic distribution of the GMM estimator θ̂ under
stratified rerandomization designs, as in Definition 2.1. We show that the variance under
stratified rerandomization is proportional to the residuals of a partially linear regression
model, up to an extra term that reflects slackness in the rerandomization criterion. In this
sense, stratified rerandomization does partially linear regression adjustment “by design.”
First, we state some technical conditions that are needed for the following results.

Assumption 3.1 (Acceptance Region). Suppose A ⊆ Rdh has non-empty interior and
Leb(∂A) = 0,12 and require E[Var(h|ψ)] ≻ 0 and E[|ψ|22 + |h|22] <∞.

Next we state the technical conditions needed for GMM estimation. Define the matrix
G = E[(∂/∂θ′)ϕ(W, θ)]|θ=θ0 ∈ Rdg×dθ and let gd(W, θ) = g(d,R, S(d), θ) for d ∈ {0, 1}.
Recall the Frobenius norm |B|2F =

∑
ij B

2
ij for any matrix B.

Assumption 3.2 (GMM). The following conditions hold for d ∈ {0, 1}:

(a) (Identification). The matrix G is full rank, and g0(θ) = 0 iff θ = θ0.

(b) We have E[gd(W, θ0)2] < ∞ and E[supθ∈Θ |gd(W, θ)|2] < ∞. Also θ → gd(W, θ) is
continuous almost surely, and Θ is compact.13

11In our examples, we will mainly be concerned with the exactly identified case. However, the theory
for the over identified case is almost identical, so we include this as well.

12Note that ∂A denotes the boundary of A, the limit points of both A and Ac.
13We can formally resolve measurability issues with the sup expressions by either (1) explicitly working

with outer probability (e.g. van der Vaart and Wellner (1996)) or (2) requiring that {gd(·, θ), θ ∈ Θ} is
universally separable for d = 0, 1 (Pollard (1984), p.38). To focus on the practical design issues, we avoid
this formalism, implicitly assuming that all quantities are appropriately measurable.
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(c) There exists a neighborhood θ0 ∈ U ⊆ Θ such that Gd(W, θ) ≡ ∂/∂θ′gd(W, θ) exists
and is continuous. Also E[supθ∈U |∂/∂θ′gd(W, θ)|F ] <∞.

Compactness could likely be relaxed using concavity assumptions or a VC class con-
dition, but we do not pursue this here. In what follows it will be conceptually useful to
reparameterize the score function.

Orthogonal Expansion. Recall ϕ(W, θ) = E[g(D,R, S, θ)|W ] forW = (R, S(1), S(0)).
Define the assignment influence component a(W, θ) ≡ Var(D)(g1(W, θ) − g0(W, θ)). For
Horvitz-Thompson weights H = (D−p)/(p−p2), a simple calculation shows that we can
expand

g(D,R, S, θ) = ϕ(W, θ) +Ha(W, θ). (3.1)

Our work below shows that a(W, θ) parameterizes estimator variance due to random
assignment, while ϕ(W, θ) parameterizes the variance due to random sampling. We work
directly with this expansion in what follows.

Example 3.3 (SATE). Continuing Example 2.6 above, let Ȳ = (1− p)Y (1) + pY (0), a
convex combination that summarizes each unit’s potential outcome level. Then for the
score g(D, Y, θ) = HY − θ, we have a(W, θ) = Ȳ . A simple calculation shows that for
θ̂ = En[HiYi] and θn = En[Yi(1)− Yi(0)], we have

θ̂ − θn = En[Hia(Wi)] =
Covn(Di, Ȳi)

Varn(Di)
. (3.2)

Intuitively, the term En[Hia(Wi)] from Equation 3.1 isolates the estimator variance
due to chance in-sample correlations between the assignments Di and outcome levels
Ȳi. By contrast, ϕ(W, θ) = Y (1) − Y (0) − θ does not depend on assignments Di, and
Var(ϕ(W, θ)) = Var(Y (1)−Y (0)) isolates the estimator variance due to random sampling
of units and heterogeneity of individual treatment effects.

3.1 Finite Population Estimand

Our first theorem studies GMM estimation of the finite population estimand θn, which
solves En[ϕ(Wi, θn)] = 0. We extend these results to θ0 in Corollary 3.8 below. To state
the theorem, define the GMM linearization matrix Π = −(G′MG)−1G′M ∈ Rdθ×dg . Note
that in the exactly identified case dg = dθ, we just have Π = −G−1. For brevity, we also
denote vD = Var(D) = p− p2.

Before stating the main result, we first derive the influence function for GMM esti-
mation of θn under stratified rerandomization.

Lemma 3.4 (Linearization). Suppose D1:n as in Definition 2.1 and require Assumption
3.1, 3.2. Then

√
n(θ̂ − θn) =

√
nEn[HiΠa(Wi, θ0)] + op(1).
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Lemma 3.4 generalizes Equation 3.2 above, showing that

θ̂ − θn =
Covn(Di,Πa(Wi, θ0))

Varn(Di)
+ op(n

−1/2).

This implies that to first order, the errors in estimating θn are driven by the random
in-sample correlations between treatment assignments Di and the assignment influence
function Πa(Wi, θ0). Our main theorem shows that, by balancing ψ and h, stratified
rerandomization reduces these correlations, improving precision.

Theorem 3.5 (GMM). Suppose D1:n as in Definition 2.1. Require Assumption 3.1, 3.2.
Then

√
n(θ̂ − θn)|W1:n ⇒ N (0, Va) +RA, independent RV’s with

Va = min
γ∈Rdh×dθ

v−1
D E[Var(Πa(W, θ0)− γ′h|ψ)]. (3.3)

Let γ0 be optimal in Equation 3.3. The term RA is a truncated Gaussian

RA ∼ γ′0Zh |Zh ∈ A, Zh ∼ N (0, v−1
D E[Var(h|ψ)]). (3.4)

Note that the variance matrix Va ∈ Rdθ×dθ , so the minimum should be interpreted in
the positive semidefinite sense. In particular, we say V (γ0) = minγ V (γ) if V (γ0) ⪯ V (γ)

for all γ ∈ Rdh×dθ . Theorem 3.5 shows that
√
n(θ̂ − θn) is asymptotically distributed

as an independent sum of a normal N (0, Va) and truncated normal RA. The normal
term N (0, Va) only depends on the “treatment assignment” component of the influence
function, Πa(W, θ0). The variance is attenuated nonparametrically by the stratification
variables ψ and linearly by rerandomization covariates h.

Residual Imbalance. The truncated Gaussian term RA ∼ γ′0Zh |Zh ∈ A arises
from leftover covariate imbalances due to slackness in the rerandomization acceptance
criterion,

√
n(h̄1 − h̄0) ∈ A, since A ̸= {0}. If the acceptance region A is symmetric

about zero, i.e. x ∈ A ⇐⇒ −x ∈ A, then E[RA] = 0, so the GMM estimator θ̂ is
first-order asymptotically unbiased. In principle, RA could be made negligible relative to
N (0, Va) in large samples by choosing a small enough acceptance region A. For example,
if A = B(0, ϵ) then RB(0,ϵ) ∼ {γ′0Zh | |Zh|2 ≤ ϵ} p→ 0 as ϵ→ 0. However, in finite samples
and for small enough ϵ, this acceptance region may be infeasible. We study a minimax
style criterion to choose an efficient acceptance region A in Section 5 below.

To isolate the precision gains due to rerandomization, the following corollary special-
izes Theorem 3.5 to the case of stratification without rerandomization (A = Rdh), as well
as complete randomization, as defined in Examples 2.3 and 2.4.

Corollary 3.6 (Pure Stratification). Suppose D1:n as in Definition 2.1 with A = Rdh. Re-
quire Assumption 3.1. Then

√
n(θ̂−θn)|W1:n ⇒ N (0, V ) with V = v−1

D E[Var(Πa(W, θ0)|ψ)].
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In particular, if D1:n ∼ CR(p) then V = v−1
D Var(Πa(W, θ0)).

Corollary 3.6 shows that fine stratification reduces the variance of GMM estimation
to V = v−1

D E[Var(Πa(W, θ0)|ψ)] ≤ v−1
D Var(Πa(W, θ0)), a nonparametric improvement.

Rerandomization as in Definition 2.1 provides a further linear variance reduction to Va =
minγ∈Rdh×dθ E[Var(Πa(W, θ0)− γ′h|ψ)], up to the residual imbalance term RA.

Remark 3.7 (Design-Based Asymptotics). Our results above show that
√
n(θ̂−θn)|W1:n ⇒

N (0, Va)+RA, conditional on the sampled data W1:n = (Ri, Si(1), Si(0))
n
i=1.14 This result

is “design-based” in the sense that the variance in the limiting distribution arises solely
due to randomness of the treatment assignments D1:n. However, we impose structure on
the sequence of populations W1:n ex-ante, assuming each population is drawn from a fixed
measure, Wi ∼ F . This allows us to provide simple variance expressions that connect
our results with the superpopulation-based literature on GMM and partially linear ad-
justment in econometrics. By contrast, the “sequence of finite populations model” often
used in the statistics literature (e.g. Li et al. (2018)) begins with an arbitrary sequence of
finite populations (Wi,n)

n
i=1, imposing the minimal structure needed for certain moments

to converge ex-post. It would be interesting to extend our results to this setting, but we
leave this to future work.

3.2 Superpopulation Estimand

The next result extends Theorem 3.5 to the superpopulation estimand θ0, which uniquely
solves E[ϕ(W, θ0)] = 0.

Corollary 3.8 (Superpopulation Estimand). Suppose D1:n is as in Definition 2.1. Re-
quire Assumption 3.1, 3.2.

(a) We have
√
n(θ̂ − θ0) ⇒ N (0, Vϕ) + N (0, Va) + RA, independent RV’s with Vϕ =

Var(Πϕ(W, θ0)) and Va, RA exactly as in Theorem 3.5.

(b) (Pure Stratification). If A = Rdh, this is
√
n(θ̂ − θ0) ⇒ N (0, V ) with

V = Var(Πϕ(W, θ0)) + v−1
D E[Var(Πa(W, θ0)|ψ)].

Comparing Corollary 3.8 with the results above, we see that targeting θ0 instead of
θn adds an extra independent Gaussian term N (0, Vϕ) to the asymptotic distribution.
Intuitively, Vϕ arises due to iid random sampling of Πϕ(W, θ0). Notice that stratification
and rerandomization only affect the assignment influence function component Πa(W, θ0),
while the sampling influence component Πϕ(W, θ0) is irreducible. In this sense, the statis-
tical consequences of different designs and adjustment strategies all happen at the level

14See Proposition 8.16 in the appendix for a formal statement.
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of the finite population estimand θn, while targeting the superpopulation estimand θ0

just adds extra irreducible noise. For pure stratification, Bai et al. (2024) were the first
to derive an analogue of part (b) of Corollary 3.8 in the exactly identified case, under
different GMM regularity conditions than we use here.

Example 3.9 (SATE). Continuing Example 2.6, we had ϕ(W, θ) = Y (1)− Y (0)− θ, so
G = 1 and Π = 1. As above, a(W, θ) = (1− p)Y (1) + pY (0) ≡ Ȳ . The GMM estimator
θ̂ = Ȳ1 − Ȳ0 is just difference of means. Then by Theorem 3.5 and Corollary 3.8, we have
√
n(θ̂ − SATE)|W1:n ⇒ N (0, Va) +RA and

√
n(θ̂ − ATE) ⇒ N (0, Vϕ + Va) +RA with

Vϕ = Var(Y (1)− Y (0)) Va = min
γ∈Rdh

v−1
D E[Var(Ȳ − γ′h|ψ)]. (3.5)

The term Vϕ, which only appears when estimating the superpopulation estimand θ0,
reflects sampling variance due to treatment effect heterogeneity. The term Va is the
variance due to random assignment, caused by random in-sample correlations between
treatments D and outcome levels Ȳ . Covariate-adaptive randomization and adjustment
can be used to reduce Va, while Vϕ is an irreducible sampling variance.

Remark 3.10. Wang et al. (2021) study SATE estimation under stratified rerandomiza-
tion in the sequence of finite populations framework. Relative to Wang et al. (2021), by
imposing the tight-matching condition 2.1 we are able to derive a simple closed form for
the asymptotic variance in terms of the measure W ∼ F , showing an equivalence with
partially linear regression adjustment.

Example 3.11 (Treatment Effect Heterogeneity). Continuing Example 2.7, consider the
case with perfect compliance D = Z and f(X, θ) = X ′θ. Then we can use the slightly
modified score g(D,X, Y, θ) = (HY − X ′θ)X. Then for τ = Y (1) − Y (0) we have
ϕ(W, θ0) = (τ − X ′θ0)X, and the parameters θn, θ0 are the best linear predictors of
treatment effect heterogeneity

θn = argmin
θ

En[(τi −X ′
iθ)

2], θ0 = argmin
θ

E[(τ −X ′θ)2].

It’s also easy to see that a(W, θ0) = Ȳ X and Π = E[XX ′]−1. Then for e = τ −X ′θ0, the
variance matrices in Corollary 3.8 are

Vϕ = E[XX ′]−1E[e2XX ′]E[XX ′]−1 Va = min
γ∈Rdh×dx

v−1
D E[Var(ȲΠX − γ′h|ψ)].

The expression for Va shows that if we want to precisely estimate treatment effect het-
erogeneity, it is important to stratify and rerandomize not only the variables that predict
outcome levels Ȳ , but also their interactions with the heterogeneity variable X.

12



3.3 Equivalence with Partially Linear Adjustment

Example 3.9 showed that, up to the rerandomization imbalance RA, the unadjusted
estimator θ̂ = Ȳ1 − Ȳ0 has asymptotic variance Va = minγ∈Rdh v

−1
D E[Var(Ȳ − γ′h|ψ)].

This can be rewritten in terms of the residuals of a partially linear regression of Ȳ on ψ
and h:

Va = min
γ∈Rdh
t∈L2(ψ)

v−1
D Var(Ȳ − γ′h− t(ψ)). (3.6)

More generally, Theorem 3.5 shows that under stratified rerandomization designs, the
usual GMM estimator θ̂ behaves like semiparametrically adjusted GMM in the iid setting.
Formally, let L(ψ) = Ldθ2 (ψ) be the dθ-fold Cartesian product of L2(ψ), the space of
square-integrable functions. Then the variance due to random assignment Va in Theorem
3.5 is can be written in terms of the residuals of the influence function Πa(W, θ0) in a
partially linear regression on ψ and h:

Va = min
γ∈Rdh×dθ
t∈L(ψ)

v−1
D Var (Πa(W, θ0)− γ′h− t(ψ)) . (3.7)

Intuitively, stratified rerandomization does partially linear regression adjustment “by de-
sign,” providing nonparametric control over ψ and linear control over h. For a more
explicit equivalence statement, define m(ψ, h) = γ′0h + t0(ψ) to be the partially linear
function achieving the optimum in Equation 3.7. Define the oracle semiparametrically
adjusted GMM estimator

θ̂∗ = θ̂ − En[Him(ψi, hi)]. (3.8)

For example, for the SATE estimation problem one can show that θ̂∗ is just an oracle
version of the usual augmented inverse propensity weighting (AIPW) estimator (Robins
and Rotnitzky (1995)), with partially linear regression models in each arm.15

Theorem 3.12 (Partially Linear Adjustment). Suppose that D1:n ∼ CR(p). The oracle
partially linearly adjusted GMM estimator

√
n(θ̂∗ − θn)|W1:n ⇒ N (0, Va), with variance

Va as defined in Theorem 3.5.

Under a completely randomized design, we require ex-post semiparametric adjustment
to achieve Va. Under stratified rerandomization, however, the simple GMM estimator θ̂
automatically achieves Va, up to the leftover imbalance term RA.

15Feasible partially linear adjustment in an iid mean estimation problem with missing data was studied
in Wang et al. (2004). See also the related semiparametric adjustment for GMM parameters in Graham
(2011).
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4 Nonlinear Rerandomization

In this section, we study several novel “nonlinear” rerandomization criteria, proving that
in many cases such criteria are asymptotically equivalent to linear rerandomization (Defi-
nition 2.1), with an implicit choice of rerandomization covariates h and acceptance region
A. This shows that our asymptotics and inference methods apply to a broad class of
asymptotically linear rerandomization schemes.

4.1 GMM Rerandomization

First, we generalize the imbalance metric In introduced in Definition 2.1, allowing re-
jection of a treatment allocation D1:n based on potentially nonlinear features of the in-
sample distribution of treatments and covariates (Di, Xi)

n
i=1. We can define a large class

of nonlinear imbalance metrics by letting m(Xi, β) be a score function and considering
within-arm GMM estimators β̂1 and β̂0 defined by

En[Dim(Xi, β̂1)] = 0, En[(1−Di)m(Xi, β̂0)] = 0. (4.1)

We propose to rerandomize until the within-arm parameter estimates are approxi-
mately equal,

√
n(β̂1 − β̂0) ≈ 0.

Definition 4.1 (GMM Rerandomization). Define Imn =
√
n(β̂1 − β̂0) as above, where

m(X, β) is a score satisfying Assumption 3.2. Suppose dβ = dm (exact identification) and
let A be a symmetric acceptance region. Do the following: (1) form groups as in Definition
2.1. (2) Draw D1:n by stratified randomization. (3) If imbalance Imn =

√
n(β̂1 − β̂0) ∈ A,

accept D1:n. Otherwise, repeat from (2).

Intuitively, the generalized imbalance metric Imn allows us to randomize until possi-
bly nonlinear features of the covariates are balanced between the treatment and control
groups. Observe that if m(Xi, β) = Xi − β, then β̂d = X̄d for d = 0, 1 and Imn = In, so
linear rerandomization is a special case.

Example 4.2 (Density Rerandomization). Let f(X, β) be a parametric density model for
covariates X, which may be misspecified. After drawing D1:n by stratified randomization,
consider forming (quasi) maximum likelihood estimators β̂1 ∈ argmaxβ En[Di log f(Xi, β)]

and β̂0 ∈ argmaxβ En[(1−Di) log f(Xi, β)] for the density of covariates assigned to each
treatment arm, rerandomizing until the estimated parameters

√
n|β̂1 − β̂0|2 ≤ ϵ. Under

regularity conditions,16 β̂d are GMM estimators as in Equation 4.1 with score function
m(Xi, β) = ∇β log f(Xi, β), so this procedure is a GMM rerandomization with acceptance
region A = {x : |x|2 ≤ ϵ}.

16For example, if β → log f(X,β) is a.s. strictly concave, the key identification condition in Assumption
3.2 will be satisfied.
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Let β∗ be the unique solution toE[m(X, β∗)] = 0 and defineGm = E[(∂/∂β′)m(Xi, β
∗)].

Our next result shows that GMM rerandomization with acceptance criterion Imn ∈ A is
equivalent to linear rerandomization (Definition 2.1) with an implicit choice of rerandom-
ization covariates hi = m(Xi, β

∗) and linearly transformed acceptance region.

Theorem 4.3 (GMM Rerandomization). Suppose D1:n is as in Definition 4.1 and As-
sumption 3.2 holds. Then

√
n(θ̂ − θn)|W1:n ⇒ N (0, Va) +R, independent RV’s with

Va = min
γ∈Rdm×dθ

v−1
D E[Var(Πa(W, θ0)− γ′m(Xi, β

∗)|ψ)]. (4.2)

The residual R ∼ γ′0Zm |Zm ∈ GmA for Zm ∼ N (0, v−1
D E[Var(m(Xi, β

∗)|ψ)]), where γ0
is optimal in Equation 4.2.

Theorem 4.3 shows that by rerandomizing until
√
n(β̂1 − β̂0) ∈ A, we implicitly

balance the influence function −G−1
m m(Xi, β

∗) for the difference of GMM estimators in
Equation 4.1. This suggests an equivalent, but computationally much simpler design with
only one round of nonlinear estimation. In particular, let β̂ solve En[m(Xi, β̂)] = 0 be the
pooled GMM estimator and set rerandomization covariates ĥi = m(Xi, β̂), rerandomizing
until

√
nEn[Hiĥi] ∈ GmA. The next result shows that this design, which generalizes

Definition 2.1 to allow for estimated covariates, is asymptotically equivalent to the GMM
rerandomization in Definition 4.1.

Corollary 4.4. Suppose Assumption 3.1, 3.2 hold and let m(X, β) be as in Definition
4.1. Let D1:n be rerandomized as in Definition 2.1 with ĥi = m(Xi, β̂) and acceptance
region GmA. Then

√
n(θ̂ − θn)|W1:n ⇒ N (0, Va) + R, with both variables identical to

those in Theorem 4.3.

Corollary 4.4 is a useful tool for showing the equivalence of computationally intensive
designs based on nonlinear estimation with simpler linear rerandomization schemes, as
shown in the next example.

Example 4.5 (Density Rerandomization). Continuing Example 4.2, for x ∈ X and a
sufficient statistic r(x) ∈ Rdr , define the exponential family f(x, β) = exp(β′r(x)− t(β)),
with t(β) = log

∫
X exp(β′r(x))dν(x) for some measure ν on X . If the sufficient statistics

(rj(x))
k
j=1 are ν-a.s. linearly independent, one can show that t(β) is strictly convex, so

β → log f(x, β) is strictly concave for all x.17 Then the score m(X, β) = ∇β log f(X, β)

has a unique solution E[m(X, β∗)] = 0, and quasi-MLE estimation in this family can
be formulated as a GMM problem. By Corollary 4.4, density rerandomization using
f(x, β) is asymptotically equivalent to linear rerandomization with ĥi = ∇β log f(Xi, β̂) =

r(Xi) − t(β̂). Since En[Hit(β̂)] = t(β̂)En[Hi] = 0, this is in turn equivalent to linear
17In particular, this holds for β s.t. t(β) < ∞. See e.g. Wainwright and Jordan (2008) Chapter 3 for

an introduction to the properties of exponential families and the log partition function t(β).
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rerandomization with hi = r(Xi), directly balancing the sufficient statistics for the family.
For example, if x ∈ {±1}k are binary variables, consider rerandomization based on density
estimation in the graphical model18

f(x, β) = exp

(∑
j

xjβj +
∑
j<l

xjxlβjl − t(β)

)
.

The sufficient statistic is r(x) = ((xj)j, (xjxl)j<l). The parameters βjl model correlation
between the binary variables xj and xl. Categorical variables with more than two lev-
els and and higher order interactions can easily be accommodated. By the discussion
above, a design that rerandomizes based on quasi-MLE density estimates in this family
is asymptotically equivalent to the much simpler linear rerandomization in Definition 2.1
with covariates hi = ((xj)j, (xjxl)j<l).

4.2 Propensity Score Rerandomization

To motivate a propensity score based rerandomization procedure, note that under strat-
ified randomization we have E[Di|Xi] = p for all units. In finite samples, however, the
realized propensity p̂(B) = En[Di|Xi ∈ B] may significantly diverge from p in certain
regions B ⊆ RdX of the covariate space. This implies that covariates are predictive of
treatment assignments post-randomization, a form of “in-sample confounding,” which of
vanishes as n → ∞ but affects precision. To prevent this, we could, for instance, reject
allocations where |p̂(B)−p| > ϵ for some collection of sets B. To make this idea tractable
without fully discretizing, consider a parametric propensity model p(X, β) = L(X ′β) and
define the MLE estimator

β̂ ∈ argmax
β∈Rdβ

En[Di logL(X
′
iβ) + (1−Di) log(1− L(X ′

iβ))]. (4.3)

We can measure the average gap between the estimated and true propensity score using

Jn = nEn[(p− L(X ′
iβ̂))

2]. (4.4)

Intuitively, if Jn is large, then the covariates X are predictive of treatment status in some
parts of the covariate space. To avoid this, we propose rerandomizing until the imbalance
metric Jn is below a threshold:

Definition 4.6 (Propensity Rerandomization). Do the following: (1) form groups as in
Definition 2.1. (2) Draw D1:n and estimate the propensity model in Equation 4.3. (3) If
imbalance Jn ≤ ϵ, accept. Otherwise, repeat from (2).

18This is known as the Ising model in statistical physics. See Wainwright and Jordan (2008) chapter
6 for efficient MLE algorithms in this family.
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Our next result shows that propensity rerandomization as in Definition 4.6 is equiv-
alent to a simpler linear rerandomization design, with an implicit choice of ellipsoidal
acceptance region. We require some extra regularity conditions on the link function L,
which for brevity we state in Appendix 8.5.

Theorem 4.7 (Propensity Rerandomization). Suppose D1:n is as in Definition 4.6. Re-
quire Assumptions 3.2, 8.12. Then

√
n(θ̂ − θn)|W1:n ⇒ N (0, Va) +R.

Va = min
γ∈Rdh×dθ

v−1
D E[Var(Πa(W, θ0)− γ′h|ψ)].

The residual R ∼ γ′0Zh |Z ′
hVar(h)

−1Zh ≤ ϵ for Zh ∼ N (0, v−1
D E[Var(h|ψ)]) and γ0 opti-

mal in the equation above.

Theorem 4.7 shows that for any sufficiently regular link function, propensity reran-
domization is asymptotically equivalent to the quadratic rerandomization design in Ex-
ample 2.2, with acceptance criterion n(h̄1 − h̄0)

′ Varn(hi)
−1(h̄1 − h̄0) ≤ ϵ. Equivalently,

propensity rerandomization behaves like linear rerandomization with In =
√
n(h̄1 − h̄0)

and ellipsoidal acceptance region A = Var(h)1/2B(0, ϵ).19

Implicit Acceptance Regions. Both nonlinear designs in this section turned out to
be equivalent to the standard rerandomization scheme in Definition 2.1, with a specific,
implicit choice of rerandomization moments and acceptance region determined by the
choice of score m and marginal covariate distribution. However, this implicit choice is
not likely to be optimal, since the residual term in the asymptotic error distribution
RA ∼ γ′0Zh|Zh ∈ A depends on both the covariates Zh ∼ N (0, v−1

D E[Var(h|ψ)]), and the
partially linear coefficient γ0. This coefficient is determined by the joint distribution of
the assignment influence function Πa(W, θ0) and covariates (ψ, h). In the next section, we
show how to use prior information about this joint distribution to optimize the acceptance
region and bound the variance of RA.

5 Optimizing Acceptance Regions

In this section, we study efficient choice of the acceptance region A ⊆ Rdh . For intuition,
we first restrict to the case of estimating θn = SATE, generalizing in what follows.
Example 3.9 showed that

√
n(θ̂−SATE)|W1:n ⇒ N (0, V (γ0))+γ

′
0ZhA, independent RV’s

with ZhA = Zh|Zh ∈ A and V (γ0) that does not depend on A. The coefficient γ0 is
identified by the partially linear regression20

Ȳ = γ′0h+ t0(ψ) + e, E[e|ψ] = 0, E[eh] = 0.

19A related result was found by Ding and Zhao (2024), who study rerandomizing until the p-value of
a logistic regression coefficient is above a threshold.

20This expansion is without loss of generality. We do not impose well-specification E[e|ψ, h] = 0.
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The term RA = γ′0ZhA arises from fluctuations of Ȳ predictable by h that are not balanced
by rerandomization due to slackness in the acceptance region, A ̸= {0}. More precisely,
γ′0ZhA is the limiting distribution of γ′0In = γ′0

√
n(h̄1 − h̄0), the projection of covariate

imbalances in h along the direction γ0. This suggests an oracle acceptance criterion that
rerandomizes until |γ′0In| ≤ ϵ, with acceptance region A = {x : |γ′0x| ≤ ϵ}. Of course,
this is infeasible since γ0 is unknown when designing the experiment.

5.1 Minimax Rerandomization

Since γ0 is unknown at design-time, we instead take a minimax approach that incorporates
prior information about the coefficient γ0. For information set B ⊆ Rdh specified by the
researcher, consider rerandomizing until the worst case in-sample correlation between
treatments and covariates is small enough,

sup
γ∈B

|γ′In| = sup
γ∈B

∣∣∣∣Covn(γ′hi, Di)

Varn(Di)

∣∣∣∣ ≤ ϵ. (5.1)

Equivalently, we rerandomize until pB(In) ≤ ϵ for the convex penalty function pB(x) =
supγ∈B |γ′x|. This significantly generalizes the commonly used quadratic penalty function
p(x) = x′Σx (e.g. Schindl and Branson (2024)). Our next result shows that Equation 5.1
is a linear rerandomization, characterizing the implicit acceptance region A.

Proposition 5.1 (Acceptance Region). The criterion pB(In) ≤ ϵ ⇐⇒ In ∈ A0 for
A0 = ϵB◦ with B◦ = {x : supγ∈B |γ′x| ≤ 1} ⊆ Rdh, the absolute polar of B. The set A0

is symmetric and convex. If B is bounded, A0 is closed and has non-empty interior.21

Note that since A0 is symmetric, the discussion after Theorem 3.5 implies that the
asymptotic distribution of θ̂ under the design in Equation 5.1 is centered at zero. We let
B be totally bounded in what follows. The proposition shows that in this case A0 has
non-empty interior, satisfying the conditions of Assumption 3.1.

We showed above that
√
n(θ̂ − SATE)|W1:n ⇒ L0 for L0 = N (0, V (γ0)) + γ′0ZhA.

Since γ0 is unknown at design time, define a family {Lγ,A : γ ∈ Rdh , A ⊆ Rdh} of possible
limiting distributions of θ̂, with each Lγ,A = N (0, V (γ)) + γ′ZhA a sum of independent
RV’s as above. For any distribution in this family, the conditional asymptotic bias of θ̂
given realized covariate imbalances ZhA is bias(Lγ,A|ZhA) ≡ E[Lγ,A|ZhA]. Our main result
shows that the polar acceptance region A0 = ϵB◦ maximizes rerandomization acceptance
probability P (Zh ∈ A), subject to a strict constraint on the worst-case conditional bias
consistent with the prior information γ0 ∈ B.

21Also if intB ̸= ∅ then A0 is bounded. See Aliprantis and Border (2006) for more on polar sets.
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Theorem 5.2 (Minimax). The acceptance region A0 = ϵB◦ solves22

A0 = argmax
A⊆Rdh

P (Zh ∈ A) s.t. sup
γ∈B

| bias(Lγ,A|ZhA)| ≤ ϵ. (5.2)

In particular, if γ0 ∈ B (well-specification) then | bias(L0|ZhA0)| ≤ ϵ and Var(L0) ≤
Va + ϵ2, where Va is the partially linear variance in Equation 3.6.

The expected number of independent draws of Zh until Zh ∈ A is P (Zh ∈ A)−1.
Then, equivalently, Equation 5.2 shows that the acceptance region A0 minimizes the
(asymptotic) computational cost of rerandomization, subject to a strict guarantee on
statistical performance. From the final statement of the theorem, if the prior information
set B is well-specified (γ0 ∈ B), setting A0 = ϵB◦ bounds the magnitude of the conditional
asymptotic bias E[L0|ZhA0 ] of the GMM estimator θ̂ below ϵ. In particular, this implies
that the variance Var(L0) of the asymptotic distribution

√
n(θ̂− θn) ⇒ L0 = N (0, Va) +

γ′0ZhA0 is within ϵ2 of the optimal partially linear variance Va in Equation 3.7.

Remark 5.3 (Integral Probability Metric). Before continuing, we briefly note an inter-
esting interpretation of the design in Equation 5.1. For distributions P,Q and a function
class F , the integral probability metric is ρ(P,Q;F) ≡ supf∈F |EP [f(X)]−EQ[f(X)]|.23

Let FB = {γ′h : γ ∈ B} and define empirical distributions P̂d = (hi|Di = d) for d = 0, 1.
We have

sup
γ∈B

|γ′In| ≤ ϵ ⇐⇒
√
nρ(P̂1, P̂0;FB) ≤ ϵ.

The minimax design rerandomizes until covariates h are balanced according to ρ(P̂1, P̂0;FB),
a distance between covariate distributions that is only sensitive to the projections γ′h
that actually matter for estimating θn = SATE. By doing so, we maximize acceptance
probability subject to the statistical guarantee in Theorem 5.2.

5.2 Specifying Prior Information

Without pilot data, we must use introspection to choose the prior information set B
containing γ0. Intuitively, γ0 parameterizes how much the average outcome level Ȳ can
change for a unit change in h, holding ψ fixed. If t0(ψ) = t′ψ happens to be linear, then
Ȳ = c+ γ′0h+ t′ψ+ e and γ0 is an OLS coefficient. The following examples provide some
reasonable prior information specifications and their associated acceptance regions, using
a general characterization of acceptance regions A0 = ϵB◦ in Lemma 5.6 below.

22Implicitly, we maximize only over Borel-measurable sets A ∈ B(Rdh). The solution A0 is unique up
to the equivalence class {A ∈ B(Rdh) : Leb(A△A0) = 0}, where △ denotes symmetric difference.

23The pseudometric ρ is also referred to as the maximum mean discrepancy. This is a commonly used
statistic in two-sample testing, see e.g. Gretton et al. (2008).
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Figure 1: Prior information B and A0 = ϵB◦ for Examples 5.4 and 5.5.

Example 5.4 (Rectangle). One specification is to assume γ0j ∈ [lj, uj] for each 1 ≤ j ≤
dh, setting B =

∏dh
j=1[lj, uj]. This allows for sign constraints, e.g. 0 ≤ γ0j ≤ m for some

j and −m ≤ γ0j ≤ 0 for others. Lemma 5.6 below shows that if B =
∏dh

j=1[lj, uj], then
A0 = ϵB◦ = {x : |x′l + x′u|+

∑
j |xj|uj − |xj|lj ≤ 2ϵ}, where l = (lj)j and u = (uj)j. An

example is shown in Figure 1. Note that the region A0 is conservative in the direction
of the set B = [1, 2]× [1, 3/2], rejecting covariate imbalances that are too closely aligned
with adverse coefficient values γ0 ∈ B. The region A0 is more lenient in directions
approximately orthogonal to B.

Example 5.5 (Ellipse). Another natural specification is to set B = γ̄ +B2(0,m), for an
uncertainty parameter m and guess γ0 ≈ γ̄. By Lemma 5.6, A0 = {x : |x′γ̄|+m|x|2 ≤ ϵ}.
More generally, if B = γ̄ + ΣB2(0, 1) for a positive-definite matrix Σ, then A0 = {x :

|x′γ̄| + |Σx|2 ≤ ϵ}. One application of this specification is when B is a Wald confidence
region constructed using pilot data, as discussed below.

The following lemma provides a useful characterization of the acceptance region A0 =

ϵB◦ from Theorem 5.2 for a large family of prior information set specifications. To state
the lemma, recall that |x|p = (

∑
j |xj|p)1/p for p ∈ [1,∞) and |x|∞ = maxj |xj|. For

p ∈ [1,∞], denote Bp(0, 1) = {x : |x|p ≤ 1}.

Lemma 5.6 (Acceptance Regions). For p ∈ [1,∞], let 1/p + 1/q = 1, setting q = 1 if
p = ∞ and vice-versa. Suppose B = b + ΣBp(0, 1), for b ∈ Rdh and Σ invertible. Then
A0 = {x : |x′b|+ |Σ′x|q ≤ ϵ}.
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5.3 Using Pilot Data

Next, we discuss an alternative strategy that uses pilot data to specify the set B. Suppose
we have access to Dpilot ⊥⊥ (W1:n, D1:n) of size m. Suppose

√
m(γ̂pilot− γ0) ≈ N (0, Σ̂pilot)

for some pilot estimator γ̂pilot, discussed below. Consider forming the Wald region B̂pilot =

{γ : m(γ̂pilot − γ)′Σ̂−1
pilot(γ̂pilot − γ) ≤ cα} using critical value P (χ2

dh
≤ cα) = 1 − α for

α ∈ (0, 1). Equivalently, one can write this Wald region as

B̂pilot = γ̂ + c1/2α m−1/2 · Σ̂1/2
pilotB2(0, 1). (5.3)

By Example 5.5, using B̂pilot as a prior information set gives acceptance region

Âpilot = ϵB̂◦
pilot = {x : |x′γ̂pilot|+

c
1/2
α |Σ̂1/2x|2
m1/2

≤ ϵ}. (5.4)

Note that the acceptance region Âpilot expands as the pilot size m is larger. This
reflects smaller uncertainty about the true parameter γ0, and thus less adversarial worst
case imbalance supγ∈B̂pilot |γ

′In|. Conversely, Âpilot shrinks as the confidence parameter α
and the scale of the variance estimate Σ̂pilot increases, reflecting greater uncertainty and
a more conservative approach to covariate balances. Our next result shows that reran-
domization with acceptance region Âpilot controls the variance of the residual imbalance
RA = γ′0Z|Z ∈ Âpilot with high probability, marginally over the realizations of the pilot
data. The result is an immediate consequence of Theorem 3.5 and Theorem 5.2.

Corollary 5.7 (Pilot Data). Suppose P (γ0 ∈ B̂pilot) ≥ 1 − α, for Dpilot ⊥⊥ (W1:n, D1:n).
Let D1:n as in Definition 2.1 with A = Âpilot = ϵB̂◦

pilot. If Assumptions 3.1, 3.2 hold, then
√
n(θ̂ − θn)|Dpilot ⇒ v−1

D N (0,Var(e)) + RA, where Var(RA|Dpilot) ≤ ϵ2 with probability
≥ 1− α.

Formally, the pilot estimate of γ0 and Wald region could be constructed as in Robinson
(1988). In practice, a simple approach suggested by the theory is to let γ̂pilot, Σ̂pilot be
point and variance estimators from the regression YT ∼ 1 + h + ψ, for the “tyranny of
the minority” (Lin (2013)) outcomes YT = (1− p)DY/p+ p(1−D)Y/(1− p), noting that
E[YT |W ] = (1− p)Y (1) + pY (0) = Ȳ .

General Parameters. For completeness, we extend the preceding work to general
parameters θn as in Definition 2.5. Let Πa(W, θ0) be the assignment influence function.
As in Equation 3.7, consider the partially linear decomposition

Πa(W, θ0) = γ′0h+ t0(ψ) + e, E[e|ψ] = 0, E[eh] = 0.

Note that e ∈ Rdθ and E[e|ψ] = 0 is interpreted componentwise. Consider prior informa-
tion sets Bj for each γj0 with 1 ≤ j ≤ dθ, where γj0 ∈ Rdh is the jth column of γ0. The
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final result of this section bounds the asymptotic imbalance term RA if all these prior
information sets are well specified.

Theorem 5.8. Let D1:n as in Definition 2.1 with A = ∩dθj=1ϵB
◦
j . Then

√
n(θ̂−θn)|W1:n ⇒

N (0, Va) +RA, as defined in Theorem 3.5. If γj0 ∈ Bj ∀j, then maxdθj=1Var((RA)jj) ≤ ϵ2.

Note that by construction the conservative acceptance region A = ∩dθj=1ϵB
◦
j is sym-

metric and convex.

6 Restoring Normality

In this section, we study optimal linearly adjusted GMM estimation under stratified
rerandomization. We show that, to first order, optimal ex-post linear adjustment com-
pletely removes the impact of the acceptance region A and imbalance term RA, restoring
asymptotic normality. This enables standard t-statistic and Wald-test based inference on
the parameters θn and θ0, provided in Section 7 below.

Let w denote the covariates used for ex-post adjustment and suppose E[|w|22] <∞.

Definition 6.1 (Adjusted GMM). Suppose that α̂ p→ α ∈ Rdw×dg . Define the linearly ad-
justed GMM estimator θ̂adj = θ̂−En[Hiα̂

′wi]. We refer to α̂ as the adjustment coefficient
matrix.

First, we extend Corollary 3.6 to provide asymptotics for the adjusted GMM estimator
under pure stratification (A = Rdh).

Proposition 6.2 (Linear Adjustment). Suppose D1:n as in Definition 2.1 with A = Rdh.
Require Assumption 3.2. Then we have

√
n(θ̂adj − θn)|W1:n ⇒ N (0, V (α)) with V (α) =

v−1
D E[Var(Πa(W, θ0)− α′w|ψ)] and

√
n(θ̂adj − θ0) ⇒ N (0, Vϕ + V (α)).

A version of this result was given in Cytrynbaum (2023) for the special case θ0 = ATE.
Motivated by Proposition 6.2, we define the optimal linear adjustment coefficient as the
minimizer of the asymptotic variance V (α), in the positive semidefinite sense.

Optimal Adjustment Coefficient. Define the coefficient

α0 ∈ argmin
α∈Rdw×dg

E[Var(Πa(W, θ0)− α′w|ψ)]. (6.1)

Note that if w = h then α0 = γ0, as in Theorem 3.5. If E[Var(w|ψ)] ≻ 0, then
the unique minimizer of Equation 6.1 is the partially linear regression coefficient α0 =

E[Var(w|ψ)]−1E[Cov(w,Πa(W, θ0)|ψ)]. Observe that the optimal adjustment coefficient
α0 varies with the stratification variables ψ, as observed in Cytrynbaum (2024) and Bai
et al. (2023) for ATE estimation. The main result of this section shows that adjustment
by a consistent estimate of α0 restores asymptotic normality.
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Theorem 6.3 (Restoring Normality). Suppose D1:n is as in Definition 2.1. Require
Assumption 3.1, 3.2. Let h ⊆ w and suppose that α̂ p→ α0. Then

√
n(θ̂adj − θn)|W1:n ⇒

N (0, V adj
a ) and

√
n(θ̂adj − θ0) ⇒ N(0, Vϕ + V adj

a ).

Vϕ = Var(Πϕ(W, θ0)) V adj
a = min

α∈Rdw×dg
v−1
D E[Var(Πa(W, θ0)− α′w|ψ)].

Two-step Adjustment. For nonlinear models, the coefficient α0 may depend on the
unknown parameter θ0. This suggests a two-step adjustment strategy, where we

(1) Use the unadjusted GMM estimator θ̂ to consistently estimate α̂ p→ α0.

(2) Report the adjusted estimator θ̂adj = θ̂ − En[Hiα̂
′wi].

Similarly to two-step efficient GMM, this process could be iterated until convergence
to improve finite sample properties. One feasible estimator of the optimal coefficient α0

is given in the following theorem. To state the result, define the within-group partialled
covariates w̌i = wi −

∑
j∈s(i)wj, where group s(i) contains unit i in Definition 2.1. Let

Π̂
p→ Π consistently estimate the linearization matrix and denote the score evaluation

ĝi ≡ g(Di, Ri, Si, θ̂).

Theorem 6.4 (Feasible Adjustment). Suppose D1:n is as in Definition 2.1. Require As-
sumption 3.1, 3.2. Assume that E[Var(w|ψ)] ≻ 0. Define α̂ = vDEn[w̌iw̌

′
i]
−1En[Hiw̌iĝ

′
i]Π̂

′.
Then α̂ = α0 + op(1).

In some cases, α0 is independent of θ0. For example, if a(W, θ) = a1(ψ, θ) + a2(W )

then α0 = E[Var(w|ψ)]−1E[Cov(w,Πa2(W )|ψ)] does not depend on θ0. In such cases,
one-step optimal adjustment is possible.

Corollary 6.5 (One-step Adjustment). Suppose a(W, θ) = a1(ψ, θ) + a2(W ). Then for
any θ ∈ Θ, substituting gi = g(Di, Ri, Si, θ) for ĝi in α̂ above, we have α̂ = α0 + op(1).

One-step adjustment is possible in many linear GMM problems, including the best
linear predictor of treatment effects parameter in Example 3.11.

Example 6.6 (Treatment Effect Heterogeneity). Continuing Example 3.11 with score
g(Y,D,X, θ) = (HY−X ′θ)X and θn = argminθ En[(τi−X ′

iθ)
2], recall that a(W, θ0) = Ȳ X

and Π = E[XX ′]−1. Letting θ = 0 gives g(Y,D,X, 0) = HYX. By Corollary 6.5, we
have α̂ = α0 + op(1) for the adjustment coefficient matrix

α̂ = vDEn[w̌iw̌
′
i]
−1En[H

2
i Yiw̌iX

′
i]En[XiX

′
i]
−1. (6.2)

This allows us to estimate treatment effect heterogeneity relative to a low-dimensional
vector of important covariates X, adjusting optimally for a larger set of covariates w ex-
post in order to improve precision, as well as restore asymptotic normality when A ̸= Rdh .
In the case X = 1 (SATE estimation), α̂ is equivalent to the “tyranny-of-the-minority”
style estimator proposed in Cytrynbaum (2023).
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7 Inference

In this section, we provide novel methods for inference on general causal parameters un-
der stratified rerandomization designs. We make crucial use of asymptotic normality of
the optimally adjusted estimator θ̂adj, shown in Theorem 6.3. For the superpopulation
parameter θ0, we provide asymptotically exact inference methods. The asymptotic vari-
ance for estimating the finite population parameter θn is generally not identified. In this
case, we provide conservative variance estimation that still reflects the precision gains
due to stratification and rerandomization.

7.1 Asymptotically Exact Inference

To define our variance estimator, we begin with some definitions. Let Sn denote the
set of groups constructed in Definition 2.1. For each s ∈ Sn define the centroid ψ̄s =

|s|−1
∑

i∈s ψi. Let ν : Sn → Sn be a bijective matching between groups satisfying ν(s) ̸= s,
ν2 = Id, and the homogeneity condition

1

n

∑
s∈Sn

|ψ̄s − ψ̄ν(s)|22 = op(1). (7.1)

In practice, ν is obtained by simply matching the group centroids ψ̄s into pairs using the
Derigs (1988) non-bipartite matching algorithm. Let Sνn = {s ∪ ν(s) : s ∈ Sn} be the
unions of paired groups formed by this matching. Denote a(s) =

∑
i∈sDi and k(s) = |s|.

Define the adjusted moment m̂i ≡ Π̂ĝi −Hiα̂
′wi, where ĝi ≡ g(Di, Xi, Yi, θ̂adj). Suppose

that Π̂
p→ Π and α̂

p→ α0 for the optimal adjustment coefficient in Equation 6.1. For
instance, we can use the consistent estimator provided by Theorem 6.4. Finally, define
the variance estimator components

v̂1 = n−1
∑
s∈Sνn

1

a(s)− 1

∑
i ̸=j∈s

m̂im̂
′
jDiDj/p

v̂0 = n−1
∑
s∈Sνn

1

(k − a)(s)− 1

∑
i ̸=j∈s

m̂im̂
′
j(1−Di)(1−Dj)/(1− p)

v̂10 = n−1
∑
s∈Sn

k

a(k − a)
(s)
∑
i,j∈s

m̂im̂
′
jDi(1−Dj).

Using these terms, construct the variance estimator

V̂ = Varn(m̂i)− vD(v̂1 + v̂0 − v̂10 − v̂′10). (7.2)

We require a slight strengthening of our GMM assumptions 3.2.

Assumption 7.1. There exists θ0 ∈ U ⊆ Θ open s.t. E[supθ∈U |∂/∂θ′gd(W, θ)|2F ] <∞.
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Under this condition, we can state our first inference result, showing consistent esti-
mation of the asymptotic variance matrix in Theorem 6.3.

Theorem 7.2 (Inference). Suppose D1:n is as in Definition 2.1, and impose Assumptions
3.1, 3.2, 7.1. Then V̂

p→ Vϕ + V adj
a .

By Theorem 6.3,
√
n(θ̂adj − θ0) ⇒ N(0, Vϕ + V adj

a ). Then the variance estimation
result above allows for joint inference on θ0 using e.g. standard Wald-test or t-statistic
based confidence regions.

7.2 Inference on the Finite Population Parameter

In this section, we provide asymptotically conservative inference on linear contrasts of
the finite population parameter c′θn.

As noted above, the asymptotic variance V adj
a in Theorem 6.3 for estimating the finite

population parameter θn is generically not identified. This happens because it depends
on terms of the form Var(a|ψ) ∝ Var(g1|ψ) + Var(g0|ψ) − 2Cov(g1, g0|ψ), with gd =

g(d,X, S(d), θ0). However, S(1) and S(0) are never simultaneously observed (Neyman
(1990)), so Cov(g1, g0|ψ) is generically not identified. We work with linear contrasts c′θn
since this allows us to tighten our upper bounds on the (non-identified) variance. To do
so, let û1 = En[

Di
p
m̂im̂

′
i]− v̂1 and û0 = En[

1−Di
1−p m̂im̂

′
i]− v̂0 using the estimator components

above and consider the variance estimator

V̂a(c) = vD([c
′û1c]

1/2 + [c′û0c]
1/2)2. (7.3)

By Theorem 6.3, we have
√
n(c′θ̂adj − c′θn)|W1:n ⇒ N (0, c′V adj

a c). Our next result
shows how to consistently estimate an upper bound on this asymptotic variance.

Theorem 7.3 (Inference). Suppose D1:n as in Definition 2.1 and impose Assumptions
3.1, 3.2, 7.1. Then V̂a(c)

p→ V̄a(c) ≥ c′V adj
a c.

The variance upper bound V̄a(c) ≥ c′(Vϕ + V adj
a )c, so the confidence intervals derived

from this approach are always weakly shorter than those using the variance estimator in
Equation 7.2. See Section 8.8 in the appendix for an explicit comparison. The upper
bound V̄a(c) incorporates the efficiency gains from stratification, rerandomization, and
adjustment. However, this upper bound is generally not sharp (Aronow et al. (2014)).
We leave sharp upper bounds on the asymptotic variance matrix V adj

a to future work.
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8 Proofs

8.1 Rerandomization Distribution

In what follows, we carefully distinguish between the the law of the data (W1:n, D1:n) under
“pure” stratified randomization, which we denote by P , and the law under rerandomized
stratification, which we denote by Q. First, we formally define pure stratification.

Definition 8.1 (Pure Stratification). For (Wi)
n
i=1

iid∼F , let P denote the law of (W1:n, D1:n)

under the design in steps (1) and (2) of Definition 2.1, as studied in Cytrynbaum (2024).

Next, we slightly generalize the rerandomization designs introduced in Definition 2.1,
which will be useful for our study of nonlinear rerandomization in Section 4. We let Q
denote the law of (W1:n, D1:n) under this design.

Definition 8.2 (Rerandomization). Consider the following:

(a) (Acceptance Regions). Suppose In =
√
n∆̂h + op(1) for ∆̂h = En[Hihi] with Hi =

(Di−p)/(p−p2) and τn = τ +op(1) for τ ∈ Rdτ under P . Define sample acceptance
region Tn = {x : b(x, τn) ≤ 0} and population region T = {x : b(x, τ) ≤ 0} for
b(x, y) a measurable function. We accept D1:n if In ∈ Tn.

(b) (Rerandomization Distribution). Let Fn = σ(W1:n, πn), where πn ⊥⊥ W1:n is pos-
sibly used to break ties in matching (Equation 2.1). For any event B and P as in
Definition 8.1, define the rerandomization distribution

Q(B|Fn) = P (B|Fn, In ∈ Tn), Q(B) = E[Q(B|Fn)]. (8.1)

(c) (Assumptions). Assume P (b(Zh, τ) = 0) = 0 for Zh ∼ N (0, E[Var(h|ψ)]). Require
P (Zh ∈ T ) > 0. Suppose E[|ϕ|22 + |h|22] <∞.

Our work below shows that rerandomization as in Definition 2.1 of the main text
specializes Definition 8.2 to b(x, y) = b(x) = d(x,A) − d(x,Ac) for distance function
d(x,A) = infz∈Rdh |x− z|2.

The following essential lemma shows that the high level properties (e.g. convergence
in probability) of P are inherited by the rerandomized version Q. The proof is given in
Section 8.9 below.

Lemma 8.3 (Dominance). Let (Bn)n≥1 and (Rn)n≥1 events and random variables. Sup-
pose that the rerandomization measure Q is as in Definition 8.2.

(a) If Bn ∈ Fn then P (Bn) = Q(Bn). In particular, if a random variable Rn is Fn-
measurable then Rn = op(1)/Op(1) under P ⇐⇒ Rn = op(1)/Op(1) under Q.
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(b) Q(Bn) = o(1) if P (Bn) = o(1). If Rn = op(1)/Op(1) under P then Rn = op(1)/Op(1)

under Q.

Equipped with this lemma, we will take the following approach: (1) show linearization
of the GMM estimator θ̂ about θn and θ0 under P , (2) invoke Lemma 8.3 to show these
properties still hold under Q, then (3) prove distributional convergence of the simpler
linearized quantities directly under Q. GMM linearization (1) is discussed in Section 8.3.
For (3), the next section derives the conditional asymptotic distribution of quantities of
the form

√
nEn[Hia(Wi)] under the rerandomization measure Q.

8.2 Rerandomization Asymptotics

Before studying rerandomization, we first establish a CLT for pure stratified designs,
conditional on the data W1:n.

Theorem 8.4 (CLT). Suppose E[|a(W )|22] < ∞. Define Fn = σ(W1:n, πn). Let D1:n

as in Definition 8.1. Then Xn ≡
√
nEn[Hia(Wi)] has Xn|Fn ⇒ N (0, V ). In particular,

for each t ∈ Rda we have E[eit
′Xn|Fn] = ϕ(t) + op(1) with ϕ(t) = e−t

′V t/2 and V =

v−1
D E[Var(a|ψ)].

Proof. First consider the case dg = 1. Define ui = ai − E[ai|ψi]. By Lemma A.3 in
Cytrynbaum (2024), since E[a2i ] < ∞ we have

√
nEn[(Di − p)E[ai|ψi]] = op(1). Then it

suffices to study
√
nEn[(Di−p)ui]. To do so, we will use a martingale difference sequence

(MDS) CLT. Fix an ordering l = 1, . . . , n/k of s(l) ∈ Sn, noting that |Sn| ≤ n/k. Define
Ds(l) = (Di)i∈s(l). Define H0,n = Fn and Hj,n = σ(Fn, Ds(l), l ∈ [j]) for j ≥ 1. Define
Dl,n = n−1/2

∑
i∈s(l)(Di − p)ui and Sj,n =

∑j
i=1Di,n.

(1) We claim that (Sj,n,Hj,n)j≥1 is an MDS. Adaptation is clear from our definitions.

E[(Di − p)1(i ∈ s(j))|Hj−1,n] = E[(Di − p)1(i ∈ s(j))|Fn, (Ds(l))
j−1
l=1 ]

= E[(Di − p)1(i ∈ s(j))|Fn] = E[(Di − p)|Fn]1(i ∈ s(j)) = 0.

The second equality since Ds(j) ⊥⊥ (Ds(l))l ̸=j|Fn. Then we compute E[Zj,n|Hj−1,n] =

n−1/2
∑

i∈s(l) uiE[(Di − p)|Hj−1,n] = 0. This shows the MDS property.
(2). Next, we compute the variance process. By the same argument in (1), we have

σ2
n ≡

n/k∑
j=1

E[Z2
j,n|Hj−1,n] = n−1

n/k∑
j=1

 ∑
r ̸=t∈s(j)

urutCov(Ds, Dt|Fn) +
∑
i∈s(j)

u2i Var(Di|Fn)


By Lemma C.10 of Cytrynbaum (2024), we have Cov(Ds, Dt|Fn)1(s, t ∈ s(l)) = −l(k −
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l)/k2(k − 1) ≡ c and Var(Di|Fn) = p− p2. Then we may expand σ2
n as

cn−1

n/k∑
j=1

∑
r ̸=t∈s(j)

urut + (p− p2)En[u
2
i ] ≡ cn−1

n/k∑
j=1

vj + (p− p2)En[u
2
i ] ≡ Tn1 + Tn2.

First consider Tn1. Our plan is to apply the WLLN in Lemma C.7 of Cytrynbaum
(2024) to show Tn1 = op(1). Define Fψ

n = σ(ψ1:n, πn) so that Sn ∈ Fψ
n . For r ̸= t

we have E[urut|ψ1:n, πn] = E[urE[ut|ψ1:n, ur, πn]|ψ1:n, πn] = E[urE[ut|ψt]|ψ1:n, πn] = 0.
The second equality follows by applying (A,B) ⊥⊥ C =⇒ A ⊥⊥ C|B with A = ut,
B = ψt and C = (ψ−t, ur, πn). Then E[vj|Fψ

n ] = 0 for j ∈ [n/k]. Next, observe that for
any positive constants (ak)

m
k=1 we have

∑
k ak1(

∑
k ak > c) ≤ m

∑
k ak1(ak > c/m) and

ab1(ab > c) ≤ a21(a2 > c) + b21(b2 > c). Then for cn → ∞ with cn = o(
√
n) we have

|vj|1(|vj| > cn) ≤
∑

r ̸=t∈s(j)

|urut|1

 ∑
r ̸=t∈s(j)

|urut| > cn


≤ k2

∑
r ̸=t∈s(j)

|urut|1(|urut| > cn/k
2) ≤ 2k3

∑
r∈s(j)

u2r1(u
2
r > cn/k

2).

Then we have

n−1E

 n/k∑
j=1

E[|vj|1(|vj| > cn)|Fψ
n

 ≤ 2k3En
[
E
[
u2i1(u

2
i > cn/k

2)|ψ1:n, πn
]]

≡ An.

Then E[An] = 2k3E[En[E [u2i1(u
2
i > cn/k

2)|ψi]]] = 2k3E[u2i1(u
2
i > cn/k

2)] → 0 as
n→ ∞. The first equality is by the conditional independence argument above, the second
equality is tower law, and the limit by dominated convergence since E[u2i ] ≤ E[a2i ] < ∞
by the contraction property of conditional expectation. Then An = op(1) by Markov
inequality. The conclusion cn−1

∑n/k
j=1 vj = op(1) now follows by Lemma C.7 of Cytryn-

baum (2024). For Tn2, we have En[u2i ]
p→ E[u2i ] = E[Var(a|ψ)] by vanilla WLLN. Then

we have shown σ2
n

p→ (p− p2)E[Var(a|ψ)].
(3) Finally, we show the Lindberg condition

∑n/k
j=1E[Z

2
j,n1(|Zj,n| > ϵ)|H0,n] = op(1).

Z2
j,n1(|Zj,n| > ϵ) = Z2

j,n1(Z
2
j,n > ϵ2) ≤ n−1

∑
r,t∈s(j)

|urut|1

n−1
∑

r,t∈s(j)

|urut| > ϵ2


≤ k2n−1

∑
r,t∈s(j)

|urut|1
(
|urut| > nϵ2/k2

)
≤ k3n−1

∑
r∈s(j)

u2r1
(
u2r > nϵ2/k2

)
.
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Then using the inequality above we compute

E

 n/k∑
j=1

E[Z2
j,n1(|Zj,n| > ϵ)|H0,n]

 ≤ k3E

n−1

n/k∑
j=1

∑
r∈s(j)

E[u2r1
(
u2r > nϵ2/k2

)
|Fψ

n ]


= k3E

[
En
[
E[u2i1

(
u2i > nϵ2/k2

)
|ψi]
]]

= k3E
[
u2i1

(
u2i > nϵ2/k2

)]
= o(1).

The first equality by the conditional independence argument above. The second equality
by dominated convergence. Then

∑n/k
j=1E[Z

2
j,n1(|Zj,n| > ϵ)|H0,n] = op(1) by Markov.

This finishes the proof of the Lindberg condition. Since H0,n = Fn, by Theorem C.4
in Cytrynbaum (2024), we have shown that E[eit

√
nEn[(Di−p)ai]|Fn] = ϕ(t) + op(1) for

ϕ(t) = e−t
2V/2 with V = (p− p2)E[Var(a|ψ)].

Finally, consider dim(a) ≥ 1. Fix t ∈ Rdg and let ā(Wi) = t′a(Wi) ∈ R. Then we
have Xn(t) ≡ X ′

nt = En[(Di − p)a(Wi)]
′t = En[(Di − p)a(Wi)

′t] = En[(Di − p)ā(Wi)].
By the previous result E[eiXn(t)|Fn]

p→ e−v(t)/2 with variance v(t) = E[Var(ā|ψ)] =

E[Var(t′a|ψ)] = t′E[Var(a|ψ)]t = t′V t. Then we have shown E[eit
′Xn|Fn] = e−t

′V t/2 +

op(1) as claimed.

Next, we provide asymptotic theory for stratified rerandomization. The following
definition generalizes Definition 2.1 in Section 1.

Lemma 8.5. Let Definition 8.2 hold. Let ∆̂a = En[Hiai] and ρ = (a, h). Fix t ∈ Rda.
Let (Za, Zh) ∼ N (0,Σ) for Σ = v−1

D E[Var(ρ|ψ)]. Then under P in Definition 8.1

E
[
eit

′√n∆̂a1 (In ∈ Tn) |Fn

]
= E

[
eit

′Za1 (Zh ∈ T )
]
+ op(1).

Proof. (1). Define Bn = (
√
n∆̂a, In, τn). Fix t = (t1, t2, t3) ∈ Rdg+dh+dτ and consider the

characteristic function

ϕBn(t) = E[eit
′
1

√
n∆̂a+it′2In+it′3τn|Fn] = eit

′
3τE[eit

′
1

√
n∆̂a+it′2In|Fn] + op(1)

= eit
′
3τE[eit

′
1

√
n∆̂a+it′2

√
n∆̂h|Fn] + op(1) = eit

′
3τe−t

′Σt/2 + op(1) = ϕB(t) + op(1).

For the second equality, note that eit′3τn p→ eit
′
3τ by continuous mapping. Then Rn =

eit
′
1

√
n∆̂a+it′2

√
n∆̂h(eit

′
3τn − eit

′
3τ ) = op(1). Clearly |Rn| ≤ 2, so E[|Rn||Fn] = op(1) by

Lemma 8.19. The third equality is identical, noting that eit′2In p→ eit
′
2

√
n∆̂h again by

continuous mapping. The fourth equality is Theorem 8.4 applied to
√
nEn[Hiρi]. The

final expression is the characteristic function of B = (Za, Zh, τ) with (Za, Zh) ∼ N (0,Σ).
Then we have shown that Bn|Fn ⇒ B in the sense of Proposition 8.16. Fix t ∈ R and
define G(z1, z2, x) = eit

′z11(b(z2, x) ≤ 0) and note that

G(Bn) = eit
′√n∆̂a1(b(In, τn) ≤ 0) = eit

′√n∆̂a1(In ∈ Tn).
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Define EG = {w : G(·) not continuous at w}. By Proposition 8.16, if P (B ∈ EG) = 0

then E[G(Bn)|Fn] = E[G(B)] + op(1) = E[G(Za, Zh, τ)] + op(1), which is the required
claim.

To finish the proof, we show that that P (B ∈ EG) = 0. Write G(z1, z2, x) =

f(z1)g(z2, x) for f(z1) = eit
′z1 and g(z2, x) = 1(b(z2, x) ≤ 0) and define discontinuity

point sets Ef and Eg as for EG above. By continuity of multiplication for bounded
functions, if z1 ∈ Ec

f and (z2, x) ∈ Ec
g then (z1, z2, x) ∈ Ec

G. By contrapositive,

EG ⊆ (Ef × Rdh+dτ ) ∪ (R× Eg).

Clearly Ef = ∅, so P (B ∈ EG) = P ((Zh, τ) ∈ Eg). Let E1
g = {zh : (zh, τ) ∈ Eg}. We

have (Zh, τ) ∈ Rdh × {τ}. Then P ((Zh, τ) ∈ Eg) = P (Zh ∈ E1
g ). Since zh → b(zh, τ)

is continuous, {zh : b(zh, τ) > 0} is open. Let zh ∈ {zh : b(zh, τ) > 0}. Then for small
enough r, if z′ ∈ B(zh, r) then b(z′, τ) > 0 and g(z′, τ) = 0, so g(z′, τ)− g(zh, τ) = 0, so
zh is a continuity point. A similar argument applied to zh ∈ {zh : b(zh, τ) < 0} shows
that the discontinuity points E1

g ⊆ {zh : b(zh, τ) = 0}.

Theorem 8.6 (Asymptotic Distribution). Let Definition 8.2 hold. Suppose that (Za, Zh) ∼
v−1
D E[Var((a, h)|ψ)]. Then under Q in Definition 8.2 the following hold:

(a) We have
√
nEn[Hia(Wi)]|Fn ⇒ Za|Zh ∈ T = N (0, Va) +R, independent RV’s s.t.

Va = v−1
D E[Var(a(W )− γ′0h|ψ)] = min

γ∈Rdh×dθ
v−1
D E[Var(a(W )− γ′h|ψ)].

The residual term R ∼ γ′0Zh |Zh ∈ T .

(b) Let Xn = En[ϕ(Wi)] + En[Hia(Wi)]. Then we have

√
n(Xn − E[ϕ(W )]) ⇒ Zϕ + Za|Zh ∈ T = N (0, Vϕ) +N (0, Va) +R.

The RV’s are independent with Vϕ = Var(ϕ(W )).

Proof. First, we prove (a). Let ∆̂a = En[Hia(Wi)]. Let t ∈ Rda . By definition of Q

EQ

[
eit

′√n∆̂a|Fn

]
= E

[
eit

′√n∆̂a | In ∈ Tn,Fn

]
=
E
[
eit

′√n∆̂a1(In ∈ Tn)|Fn

]
P (In ∈ Tn|Fn)

≡ an
bn
.

Define a∞ = E
[
eit

′Za1(Zh ∈ T )
]

and b∞ = P (Zh ∈ T ). By Lemma 8.5, an
p→ a∞ and

bn
p→ b∞, with b∞ > 0 by assumption in Definition 8.2. Then we have b−1

n = Op(1). Then
|an/bn−a∞/b∞| may be expanded as

∣∣∣anb∞−a∞bn
bnb∞

∣∣∣ = Op(1)|(an−a∞)b∞+a∞(b∞−bn)| ≲P
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|an − a∞|+ |b∞ − bn| = op(1). The final equality by Lemma 8.5. Then we have shown

EQ
[
eitAn|Fn

]
=
a∞
b∞

+ op(1) =
E
[
eit

′Za1(Zh ∈ T )
]

P (Zh ∈ T )
= E[eit

′Za|Zh ∈ T ] + op(1).

This proves the first statement. Next, we characterize the law of Za |Zh ∈ T . Define
ϕ(t) ≡ E

[
eit

′Za|Zh ∈ T
]
. Let γ0 ∈ Rdh×dg satisfy the normal equations E[Var(h|ψ)]γ0 =

E[Cov(h, a|ψ)]. Such a γ0 exists and satisfies the stated inequality by Lemma 8.17.
Letting Z̃a = Za − γ′0Zh, by Lemma 8.17 Z̃a ⊥⊥ Zh and Z̃a is Gaussian. Then Z̃a ⊥⊥
(Zh,1(Zh ∈ T )). Recall that A ⊥⊥ (S, T ) =⇒ A ⊥⊥ S |T . Using this fact, we have
Z̃a ⊥⊥ Zh |Zh ∈ T . Then for any t ∈ Rdg

ϕ(t) = E[eit
′Za |Zh ∈ T ] = E[eit

′Z̃aeit
′γ′0Zh|Zh ∈ T ]

= E[eit
′Z̃a |Zh ∈ T ]E[eit

′γ′0Zh|Zh ∈ T ] = E[eit
′Z̃a ]E[eit

′γ′0Zh|Zh ∈ T ].

By Proposition 8.16, we have shown Za |Zh ∈ T
d
= Z̃a + [γ′0Zh |Zh ∈ T ], where the RHS

is a sum of independent random variables with the given distributions. Clearly E[Z̃a] = 0

and Var(Z̃a) = v−1
D E[Var(a− γ′0h|ψ)]. This finishes the proof of (a).

Next we prove (b). We may expand
√
n(Xn−E[ϕ(W )]) =

√
n(En[ϕ(Wi)]−E[ϕ(W )])+

√
n∆̂a ≡ An +Bn. We have An ⇒ N (0, Vϕ) with Vϕ = Var(ϕ(W )) by vanilla CLT. Then

let t ∈ Rda and calculate

EQ

[
eit

′Xn
]
= EQ

[
eit

′AnEQ

[
eit

′Bn|Fn

]]
= ϕ(t)EQ

[
eit

′An
]
+ o(1) = ϕ(t)e−t

′Vϕt/2 + o(1).

The first equality since An ∈ Fn. The second equality since∣∣∣EQ [eit′An(EQ [eit′Bn|Fn

]
− ϕ(t))

]∣∣∣ ≤ EQ

[
|EQ

[
eit

′Bn|Fn

]
− ϕ(t)|

]
= o(1).

To see this, note that the integrand is op(1) by our work above. It is also bounded
so it converges to zero in L1(Q) by Lemma 8.19. The final equality since An ∈ Fn =

σ(W1:n, πn) and the marginal distribution of (W1:n, πn) is identical under P and Q by
definition. Then EQ

[
eit

′An
]
= EP

[
eit

′An
]
= e−t

′Vϕt/2 + o(1) by vanilla CLT. Then we
have shown

EQ

[
eit

′Xn
]
= e−t

′(Vϕ+Va)t/2E[eit
′γ′0Zh|Zh ∈ B] + o(1).

This finishes the proof of (b).

Lemma 8.7 (Linearization). Suppose Definition 8.2 and Assumption 3.2 hold. Let Π =

−(G′MG)−1G′M . Then
√
n(θ̂ − θn) =

√
nEn[HiΠa(Wi, θ0)] + op(1) and

√
n(θ̂ − θ0) =

√
nEn[Πϕ(Wi, θ0) +HiΠa(Wi, θ0)] + op(1).

See Section 8.3 below for the proof of this lemma.
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Proof of Theorem 3.5. We claim that the conditions of Definition 8.2 hold. This will allow
us to apply our general rerandomization asymptotics in Theorem 8.6 and linearization
in Lemma 8.7. To check part (a), define b(x, y) = b(x) = d(x,A) − d(x,Ac), where
d(x,A) = infs∈Rdh |x−s|2. It’s well known that x→ d(x, S) is continuous for any set S, so
b is continuous. The sample and population regions Tn = T = {x : b(x) ≤ 0}. If b(x) ≤ 0

then d(x,A) = 0, so x ∈ A ∪ ∂A ⊆ A by closedness. If b(x) > 0 then x ̸∈ A. This shows
Tn = A, so {In ∈ Tn} = {In ∈ A}. Then our criterion is of the form in Definition 8.2. For
part (b), P (b(Zh) = 0) = P (Zh ∈ ∂A) = 0 since Leb(∂A) = 0 and by absolute continuity
of Zh relative to Lebesgue measure Leb. We also have P (Zh ∈ T ) = P (Zh ∈ A) > 0 since
Zh is full measure by E[Var(h|ψ)] ≻ 0 and since A has non-empty interior.

This proves the claim. Then by Lemma 8.7,
√
n(θ̂−θn) =

√
nEn[HiΠa(Wi, θ0)]+op(1).

The result now follows immediately by Slutsky and Theorem 8.6(a), letting a → Πa.
Likewise, Corollary 3.8 follows from Theorem 8.6(b), letting ϕ→ Πϕ.

Proof of Corollary 3.6. By Theorem 3.5, since A = Rdh we have
√
n(θ̂ − θn)|W1:n ⇒

N (0, Va) + R, independent RV’s with Va = v−1
D E[Var(Πa(W, θ0) − γ′0h|ψ)] and R ∼

γ′0Zh for Zh ∼ N (0, v−1
D E[Var(h|ψ)]). Then N (0, Va) + R ∼ N (0, V ) with V = Va +

Var(γ′0Zh) = v−1
D E[Var(Πa(W, θ0)−γ′0h+γ′0h|ψ)]−2v−1

D E[Cov(Πa(W, θ0)−γ′0h, γ′0h|ψ)] =
v−1
D E[Var(Πa(W, θ0)|ψ)]. The covariance term is zero by Lemma 8.17. The second state-

ment follows by setting ψ = 1.

8.3 GMM Linearization

This section collects proofs needed for the key linearization result in Lemma 8.7. First,
define the following curves and objective functions

g0(θ) = E[ϕ(Wi, θ)], gn(θ) = En[ϕ(Wi, θ)], ĝ(θ) = En[ϕ(Wi, θ)] + En[Hia(Wi, θ)].

H0(θ) = g0(θ)
′Mg0(θ), Hn(θ) = gn(θ)Mgn(θ), Ĥ(θ) = ĝ(θ)′Mnĝ(θ)

Define Ĝ(θ) = (∂/∂θ′)ĝ(θ) and Gn(θ) = (∂/∂θ′)gn(θ) and G0(θ) = (∂/∂θ′)g0(θ). Define
G = G0(θ0). For each d ∈ {0, 1}, define gd(W, θ) = g(d,X, S(d), θ).

Lemma 8.8 (ULLN). Working under P in Definition 8.1:

(a) If Assumption 3.2(b) holds, ∥ĝ−g0∥∞,Θ = op(1), ∥gn−g0∥∞,Θ = op(1), and g0(θ) is
continuous. If also Mn

p→M then |Hn −H0|∞,Θ = op(1) and |Ĥ −H0|∞,Θ = op(1).

(b) If Assumption 3.2(c) holds, then there is an open ball U ⊆ Θ with θ0 ∈ U and
∥Ĝn−G0∥∞,U = op(1) and ∥Gn−G0∥∞,U = op(1). Also, G0(θ) is continuous on U

for G0(θ) = ∂/∂θ′E[ϕ(W, θ)].

Proof. Consider (a). First we show ∥ĝ− g0∥∞,Θ = op(1), modifying the approach used in
the iid setting in Tauchen (1985). It suffices to prove the statement componentwise. Then
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without loss assume dg = 1 and fix ϵ > 0. Note also that ϕ, a are linear combinations
of gd for d ∈ {0, 1}, so ϕ and a inherit the properties in Assumption 3.2. We have
(ĝ−gn)(θ) = En[Hia(Wi, θ)]. For each θ ∈ K define Uθm = B(θ,m−1) and v̄θm(Di,Wi) =

supθ̄∈Uθm Hia(Wi, θ). Then v̄θm(Di,Wi) may be expanded

sup
θ̄∈Uθm

Hia(Wi, θ̄) =
Di

p
sup
θ̄∈Uθm

a(Wi, θ̄) +
1−Di

1− p
sup
θ̄∈Uθm

−a(Wi, θ̄)

= sup
θ̄∈Uθm

a(Wi, θ̄) + sup
θ̄∈Uθm

−a(Wi, θ̄)

+ Hi((1− p) sup
θ̄∈Uθm

a(Wi, θ̄) + p inf
θ̄∈Uθm

a(Wi, θ̄)) ≡ fθm(Wi) +Hirθm(Wi).

In particular, E[v̄θm(Xi)] = E[fθm(Wi)]. Note both expectations exist by the envelope
condition in Assumption 3.2. By continuity at θ, fθm(Wi) → a(Wi, θ) − a(Wi, θ) = 0 as
m→ ∞. Also |fmθ(Wi)| ≲ supθ̄∈Uθm |a(Wi, θ̄)| ≤ supθ∈Θ |a(Wi, θ)|. Then by our envelope
assumption supm fθm(Wi) ∈ L1(P ), so limmE[v̄θm(Di,Wi)] = limmE[fθm(Wi)] = 0 by
dominated convergence. For each θ, let m(θ) s.t. E[fθm(θ)(Wi)] ≤ ϵ. Then {Uθm(θ) : θ ∈
Θ} is an open cover of Θ, so by compactness it admits a finite subcover {Uθl,m(θl)}

L(ϵ)
l=1 ≡

{Ul}L(ϵ)l=1 . Next, for each (θ,m) we claim En[v̄θm(Di,Wi)] = E[fθm(Wi)] + op(1). We
have En[fθm(Wi)] = E[fθm(Wi)] + op(1) by WLLN since E[fθm(Wi)] <∞ as just shown.
Similarly, we have

|rθm(Wi)| = |(1− p) sup
θ̄∈Uθm

a(Wi, θ̄) + p inf
θ̄∈Uθm

a(Wi, θ̄)| ≤ sup
θ̄∈Uθm

|a(Wi, θ̄)| ∈ L1(P ).

Then En[Hirθm(Wi)] = op(1) by Lemma A.2 in Cytrynbaum (2024). This proves the
claim. Define fl(W ) and rl(W ) to be the functions above evaluated at (θl,m(θl)). Putting
this all together, we have

sup
θ∈K

En[Hia(Wi, θ)] ≤
L(ϵ)
max
l=1

sup
θ∈Ul

En[Hia(Wi, θ)] ≤
L(ϵ)
max
l=1

En[vθlm(θl)(Di,Wi)]

=
L(ϵ)
max
l=1

(E[fθlm(θl)(Wi)] + Tnl) ≤ ϵ+
L(ϵ)
max
l=1

Tnl = ϵ+ op(1).

By symmetry, also supθ∈K −En[Hia(Wi, θ)] ≤ ϵ+ op(1). Then supθ∈K |En[Hia(Wi, θ)]| ≤
2ϵ+ op(1). Since ϵ > 0 was arbitrary, this finishes the proof of (1).

Next we show ∥gn−g0∥∞,Θ = op(1). We have (gn−g0)(θ) = En[ϕ(Wi, θ)]−E[ϕ(W, θ)].
Under our assumptions, |En[ϕ(Wi, θ)]−E[ϕ(W, θ)]|∞,Θ = op(1) and g0(θ) = E[ϕ(W, θ)] is
continuous by Lemma 2.4 of Newey and McFadden (1994). This proves the second claim.
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For the statement about objective functions, observe that

|Ĥ(θ)−Hn(θ)| = |ĝ(θ)′Mnĝ(θ)− gn(θ)
′Mgn(θ)| ≤ |(ĝ − gn)(θ)

′Mnĝ(θ)|

+ |gn(θ)′(Mn −M)ĝ(θ)|+ |gn(θ)′M(ĝ − gn)(θ)| ≤ |ĝ − gn|2(θ)||Mn|2|ĝ(θ)|2
+ |gn(θ)|2|Mn −M |2|ĝ(θ)|2 + |gn(θ)|2|M |2|ĝ − gn|2(θ) ≲ |ĝ − gn|∞,Θ||Mn|2|ĝ|∞,Θ

+ |gn|∞,Θ|Mn −M |2|ĝ|∞,Θ + |gn|∞,Θ|M |2|ĝ − gn|∞,Θ.

The first inequality by telescoping, then Cauchy-Schwarz, then using equivalence of finite-
dimensional vector space norms and supθ a(θ)b(θ) ≤ supθ a(θ) supθ b(θ) for positive a, b.
We have |gn|∞,Θ, |ĝ|∞,Θ = op(1)+|g0|∞,Θ = Op(1) since |g0|∞,Θ ≤ E[supθ∈Θ ϕ(W, θ)] <∞.
Also |Mn|2 = Op(1) and |Mn −M |2 = op(1) by continuous mapping. Taking supθ∈Θ on
both sides gives the result. The proof that |Hn−H0|∞,K = op(1) is identical. By triangle
inequality, this proves the claim.

Next consider (2). Let U1 ⊆ Ũ an open set θ0 ∈ U1 such that the closed 1/m′

enlargement Ũ1/m′

1 ⊆ Ũ for some m′ ≥ 1. Set Θ̃ = Ũ
1/m′

1 , which is compact. As in the
proof of (1), let Uθm = B(θ,m−1) for m ≥ m′. The conclusion now follows from the exact
argument in (1), applied to the alternate moment functions g̃z(Wi, θ) ≡ ∂/∂θ′gz(Wi, θ). In
particular, uniform convergence holds on any open set U ⊆ Θ̃ ⊆ Ũ . The final statement
about G0(θ) follows by dominated convergence.

Lemma 8.9 (Consistency). Under the distribution P in Definition 8.1, if Assumption
3.2 holds then θ̂ − θ0 = op(1) and θn − θ0 = op(1).

Proof. By definition, θ̂ = argminθ∈Θ Ĥ(θ). Moreover, gn(θn) = 0 so Hn(θn) = 0 and
θn ∈ argminθ∈ΘHn(θ). For (2), since g0(θ0) = 0 uniquely and rank(M) = dg, then H0(θ)

is uniquely minimized at θ0. Then by uniform convergence of Ĥ,Hn to H0, extremum
consistency (e.g. Theorem 2.1 in Newey and McFadden (1994)) implies that θn

p→ θ0 and
θ̂

p→ θ0.

Proof of Lemma 8.7. By Lemma 8.3, it suffices to show the result under P in Definition
8.1. Since θ̂ = argminθ∈Θ Ĥ(θ), we have ∇θĤ(θ̂) = 0, which is Ĝ(θ̂)′Mnĝ(θ̂) = 0. By
differentiability in Assumption 3.2 and applying Taylor’s Theorem componentwise, for
each k ∈ [dg] and some θ̃k ∈ [θ0, θ̂] we have

ĝ(θ̂) = ĝ(θ0) +
∂ĝk
∂θ′

(θ̃k)
dg
k=1(θ̂ − θ0).

Then we may expand

0 = Ĝ(θ̂)′Mn[ĝ(θ0) +
∂ĝk
∂θ′

(θ̃k)
dg
k=1(θ̂ − θ0)]

θ̂ − θ0 = −(Ĝ(θ̂)′Mn
∂ĝk
∂θ′

(θ̃k)
dg
k=1)

−1Ĝ(θ̂)′Mnĝ(θ0).
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On the event Sn = {θ̂ ∈ U}, θ̃k ∈ U for each k. Then 1(Sn)|∂ĝk∂θ′ (θ̃k)
dg
k=1 −

∂g0k
∂θ′

(θ̃k)
dg
k=1|2F ≤∑dg

k=1 supθ∈U |∂ĝk
∂θ′

(θ)− ∂g0k
∂θ′

(θ)|22 ≤ dg supθ∈U |Ĝ(θ)−G0(θ)|2F = op(1) by Lemma 8.8. Simi-
larly, 1(Sn)|Ĝ(θ̂)−G0(θ̂)|2F ≤ supθ∈U |Ĝ(θ)−G0(θ)|2F = op(1). Moreover, since θ̂ p→ θ0 and
θ̃k ∈ [θ0, θ̂] ∀k, we have 1(Sn)|G0(θ̂)−G(θ0)|2F = op(1) and 1(Sn)|∂g0k∂θ′

(θ̃k)
dg
k=1−G(θ0)|2F =

op(1), using continuous mapping and continuity of θ → G0(θ) on U , shown in Lemma 8.8.
Since P (Sn) → 1, we have shown |Ĝ(θ̂) − G(θ0)|2F = op(1) and |∂ĝk

∂θ′
(θ̃k)

dg
k=1 − G(θ0)|2F =

op(1). Since ĝ(θ0) = Op(n
−1/2) by Theorem 8.4, by the work above and continuous

mapping theorem we have

√
n(θ̂ − θ0) = −(Ĝ(θ̂)′Mn

∂ĝk
∂θ′

(θ̃k)
dg
k=1)

−1Ĝ(θ̂)′Mn

√
nĝ(θ0)

= −(G′MG)−1G′M
√
nĝ(θ0) + op(1) = Π

√
nĝ(θ0) + op(1).

This proves the second statement of Lemma 8.7. For the first statement, substituting
θn, Hn, Gn for θ̂, Ĥ, Ĝ in the above argument, we have

√
n(θn− θ0) = Π

√
ngn(θ0)+ op(1).

Then we have
√
n(θ̂ − θn) =

√
n(θ̂ − θ0 + θ0 − θn) = Π

√
n(ĝ(θ0) − gn(θ0)) + op(1) =

Π
√
nEn[Hia(Wi, θ0)] + op(1). This finishes the proof.

8.4 Linearization for M-Estimation

In this section, we extend our key result to M-estimation θ̂ = argmaxθ∈ΘEn[m(Di, Ri, Si, θ)].
M-estimation is often equivalent to GMM with score ∇θm(D,R, S, θ), e.g. if θ → m(·, θ) is
strictly concave. However, this equivalence fails when E[m(D,R, S, θ)] has local maxima,
violating GMM identification (Assumption 3.2). E.g. see Newey and McFadden (1994)
for examples. To handle such cases, in this section we analyze M-estimation under weaker
conditions. Letmd(W, θ) = m(d,R, S(d), θ) and define φm(W, θ) = E[m(D,R, S, θ)|W ] =

pm1(W, θ) + (1− p)m0(W, θ) and θn = argmaxθ∈ΘEn[φm(Wi, θ)]. Define g(D,R, S, θ) =
∇θm(D,R, S, θ) and let ϕ, a as in the main text, e.g. ϕ(W, θ) = ∇θE[m(D,R, S, θ)|W ].

Assumption 8.10 (M-estimation). The following conditions hold for d ∈ {0, 1}:

(a) (Consistency). θ0 = argmaxθ∈ΘE[φm(W, θ)] uniquely and E[supθ∈Θ |md(W, θ)|2] <
∞. Also θ → md(W, θ) is continuous almost surely and Θ is compact.

(b) (CLT). Let gd(W, θ) = ∇θmd(W, θ). We have E[gd(W, θ0)2] < ∞. There exists a
neighborhood θ0 ∈ U ⊆ Θ such that Gd(W, θ) ≡ ∂/∂θ′gd(W, θ) = (∂2/∂θ∂θ′)md(W, θ)

exists and is continuous. Also E[supθ∈U |Gd(W, θ)|F ] <∞.

The next result extends our key lemma to this setting. Combined with the results
of Section 8.2, this suffices to show that the main results of Sections 3-7 also apply to
M-estimators with multiple local maxima.
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Lemma 8.11 (Linearization). Suppose Definition 8.2 and Assumption 8.10 hold for the
M-estimator θ̂. Let G = E[(∂2/∂θ∂θ′)m(W, θ0)] and set Π = −G−1. Then

√
n(θ̂ − θn) =√

nEn[HiΠa(Wi, θ0)]+op(1) and
√
n(θ̂−θ0) =

√
nEn[Πϕ(Wi, θ0)+HiΠa(Wi, θ0)]+op(1).

Proof. By Lemma 8.3, it suffices to show the result under the distribution P . We have
|En[m(Di, Ri, Si, θ)] − E[φm(W, θ)]|∞,Θ = op(1), θ → E[φm(W, θ)] continuous, and 8.8
and also |En[φm(Wi, θ)] − E[φm(W, θ)]|∞,Θ = op(1), all by Lemma 8.8. Then by ex-
tremum consistency, we have θn

p→ θ0 and θ̂
p→ θ0. By Lemma 8.8 again, there is

an open ball U ⊆ Θ with θ0 ∈ U and ∥Ĝn − G0∥∞,U = op(1) and ∥Gn − G0∥∞,U =

op(1) for Ĝn(θ) = (∂2/∂θ∂θ′)En[m(Di, Ri, Si, θ)], Gn(θ) = (∂2/∂θ∂θ′)En[φm(Wi, θ)], and
G0(θ) = (∂2/∂θ∂θ′)E[φm(W, θ)]. Also, G0(θ) is continuous on U . Defining ĝ(θ) =

En[(∂/∂θ)m(Di, Ri, Si, θ)] and gn(θ) = En[φm(Wi, θ)], by optimality we have ĝ(θ̂) = 0

and gn(θn) = 0. Then result now follows exactly by the proof of Lemma 8.7, with a
slightly simpler first order condition.

8.5 Nonlinear Rerandomization

Proof of Theorem 4.3. We first prove a slightly more general result, allowing for over-
identified GMM estimation with positive definite weighting matrix ∆n

p→ ∆. For |x|22,A =

x′Ax, define
β̂d ∈ argmin

β∈Rdβ
|En[1(Di = d)m(Xi, β)]|22,∆n .

Define g1(D,X, β) = Dm(X, β) and g0(D,X, β) = (1 − D)m(X, β). Under the ex-
pansion in Equation 3.1, we have ϕ1(X, β) = pg1(1, X, β) = pm(X, β) and a1(X, β) =

vDg
1(1, X, β) = vDm(X, β). Similarly, ϕ0(X, β) = (1 − p)g0(0, X, β) = (1 − p)m(X, β)

and a0(X, β) = −vDg0(0, X, β) = −vDm(X, β). Note that E[g1(D,X, β)] = pE[m(X, β)]

and E[g0(D,X, β)] = (1 − p)E[m(X, β)], so the GMM parameters β1 = β0 = β∗, where
β∗ uniquely solves E[m(X, β∗)] = 0. Let Gm = E[(∂/∂β′)m(X, β∗)], which is full rank
by assumption. Then G1 = E[(∂/∂β′)g1(D,X, β∗)] = pE[(∂/∂β′)m(X, β∗)] = pGm and
Π1 = −((G1)′∆G1)−1(G1)′∆ = −p−1(G′

m∆Gm)
−1G′

m∆ ≡ p−1Πm. By symmetry, we have
Π0 = (1− p)−1Πm. Observe that

(Π1ϕ1 − Π0ϕ0)(X, β) = p−1Πmpm(X, β)− (1− p)−1Πm(1− p)m(X, β) = 0,

(Π1a1 − Π0a0)(X, β) = p−1ΠmvDm(X, β)− (1− p)−1ΠmvD(−m(X, β))

= (1− p)Πmm(X, β) + pΠmm(X, β) = Πmm(X, β).
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Then applying Lemma 8.7 to GMM estimation using g1 and g0, under the measure P in
Definition 8.1 we have

√
n(β̂1 − β̂0) =

√
n(β̂1 − β∗ − (β̂0 − β∗)) =

√
nΠ1En[ϕ

1(Xi, β
∗) +Hia

1(Xi, β
∗)]

−
√
nΠ0En[ϕ

0(Xi, β
∗) +Hia

0(Xi, β
∗)] + op(1) =

√
nΠmEn[Him(X, β∗)] + op(1).

Then Definition 4.1 is an example of Definition 2.1 with In =
√
nEn[Hihi] + op(1) for

hi = Πmm(Xi, β
∗). Then Theorem 3.5 holds with hi = Πmm(Xi, β

∗). Consider the
exactly identified case, so Πm = −G−1

m and hi = −G−1
m m(Xi, β

∗). Then by Theorem 3.5,
√
n(θ̂ − θn)|W1:n ⇒ N (0, Va) + RA. Denote Πa = Πa(W, θ0) and m = m(X, β∗). Then

the rerandomization coefficient γ0 is

γ0 = E[Var(h|ψ)]−1E[Cov(h,Πa|ψ)] = −E[Var(G−1
m m|ψ)]−1E[Cov(G−1

m m,Πa|ψ)]

= −E[G−1
m Var(m|ψ)(G−1

m )′]−1E[G−1
m Cov(m,Πa|ψ)] = −G′

mE[Var(m|ψ)]−1E[Cov(m,Πa|ψ)].

Then Va = v−1
D E[Var(Πa− γ′0(−G−1

m m)|ψ)] = v−1
D E[Var(Πa− γ′0m)|ψ)], where

γ0 = argmin
γ∈Rdβ×dθ

v−1
D E[Var(Πa− γ′m|ψ)].

From above, we have γ0 = −G′
mγ0. Then the residual term

RA ∼ γ′0Zh |Zh ∈ A ∼ −γ′0GmZh |Zh ∈ A ∼ −γ′0GmZh | (−G−1
m )(−Gm)Zh ∈ A

∼ γ′0Zm | −G−1
m Zm ∈ A ∼ γ′0Zm |Zm ∈ −GmA.

The variable Zh ∼ N (0, v−1
D E[Var(h|ψ)]), so Zm = GmZh ∼ N (0, v−1

D GmE[Var(h|ψ)]G′
m) ∼

N (0, v−1
D E[Var(Gmh|ψ)]) ∼ N (0, v−1

D E[Var(m|ψ)]) since Gmh = GmG
−1
m m = m(X, β∗).

Summarizing, we have shown Va = v−1
D E[Var(Πa− γ′0m|ψ)] and RA ∼ γ′0Zm |Zm ∈ GmA

for Zm ∼ N (0, v−1
D E[Var(m|ψ)]).

For the corollary, consider letting β̂ ∈ argmin
β∈Rdβ |En[m(Xi, β)]|22,∆n . Relative to the

expansion in Equation 3.1, am(Xi, β) = 0 and ϕm(Xi, β) = m(Xi, β), with linearization
matrix Πm as above. Then by Lemma 8.7

√
n(β̂−β∗) = ΠmEn[m(Xi, β

∗)]+op(1) = Op(1).
Consider setting hi = m(Xi, β̂). By the mean value theorem, m(Xi, β̂) − m(Xi, β

∗) =
∂m(Xi,β̃i)

∂β
(β̂ − β∗), where the β̃i ∈ [β∗, β̂] may change by row. Then we have

√
nEn[Him(Xi, β̂)]−

√
nEn[Him(Xi, β

∗)] = En[Hi(∂/∂β
′)m(Xi, β̃i)]

√
n(β̂ − β∗).

We claim that En[Hi(∂/∂β
′)m(Xi, β̃i)] = op(1). Let U open s.t. E[supβ∈U |m(Xi, β)|F ] <

∞ and define Sn = {β̂ ∈ U}. Then by consistency En[Hi(∂/∂β
′)m(Xi, β̃i)]1(S

c
n) = op(1).

Define vnijk = 1(Sn)((∂/∂β
′)m(Xi, β̃i))jk. By the definition of β̂, clearly vnijk ∈ Fn =
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σ(W1:n, πn). Moreover, we have |vnijk| ≤ supβ∈U |(∂/∂β′)m(Xi, β)|F ∈ L1 by definition
of Sn and β̃i ∈ [β∗, β̂] for each n, so by domination (vnijk)n is uniformly integrable, so
En[Hiv

n
ijk] = op(1) by Lemma A.2 of Cytrynbaum (2024). This proves the claim, showing

that In =
√
nEn[Him(Xi, β̂)] =

√
nEn[Him(Xi, β

∗)]+op(1). The result now follows from
Theorem 3.5.

Assumption 8.12 (Propensity Rerandomization). Impose the following conditions.

(a) Let L be twice differentiable, with |L′|∞, |L′′|∞ <∞. For each p ∈ (0, 1), there is a
unique c with L(c) = p. Also, |L′(c)| > 0.

(b) The score m(Di, Xi, β) = Di
L′(X′

iβ)Xi
L(X′

iβ)
−(1−Di)

L′(X′
iβ)Xi

1−L(X′
iβ)

satisfies condition 3.2. The
solution to Equation 4.3 exists.

(c) Covariates X = (1, h) for E[|h|22] <∞. Also, E[Var(h|ψ)], Var(h) are full rank.

Proof of Theorem 4.7. By assumption, β̂ is a GMM estimator form(Di, Xi, β) = Di
L′(X′

iβ)Xi
L(X′

iβ)
−

(1 − Di)
L′(X′

iβ)Xi
1−L(X′

iβ)
. Let c such that L(c) = p. Then β∗ = (c, 0) has E[m(D,X, β∗)] =

E[HiL
′(c)Xi] = 0. Relative to the decomposition in Equation 3.1, we have ϕ(X, β) =

p
L′(X′

iβ)Xi
L(X′

iβ)
− (1 − p)

L′(X′
iβ)Xi

1−L(X′
iβ)

and a(X, β) = vD(
L′(X′

iβ)Xi
L(X′

iβ)
+

L′(X′
iβ)Xi

1−L(X′
iβ)

). Since L(X ′
iβ

∗) =

L(c) = p, apparently we have ϕ(X, β∗) = 0 and a(X, β∗) = L′(c)Xi. It’s easy to see
Var(h) ≻ 0 implies E[XX ′] ≻ 0 for X = (1, h). A calculation shows that Gm =

E[ ∂
∂β′ϕ(X, β

∗)] = −L′(c)2E[XiX
′
i], so Πm = −G−1

m = 1
L′(c)2

E[XiX
′
i]
−1. By Lemma 8.7, we

have shown

√
n(β̂ − β∗) =

√
nΠmEn[ϕ(Xi, β

∗) +Hia(Xi, β
∗)] + op(1)

=

√
n

L′(c)
E[XiX

′
i]
−1En[HiXi] + op(1).

Consider rerandomizing until Jn = nEn[(p− L(X ′
iβ̂))

2] ≤ ϵ2. Then for β∗ s.t. L(x′β∗) =

p, the above quantity is nEn[(L(X ′
iβ̂) − L(X ′

iβ
∗))2]. By Taylor’s Theorem, L(X ′

iβ̂) −
L(X ′

iβ
∗) = L′(ξi)(X

′
iβ̂ − X ′

iβ
∗) = L′(ξi)X

′
i(β̂ − β∗) for some ξi ∈ [X ′

iβ
∗, X ′

iβ̂]. Then we
have

Jn = n(β̂ − β∗)′En[XiX
′
iL

′(ξi)
2](β̂ − β∗).

Claim that En[XiX
′
iL

′(ξi)
2] = En[XiX

′
iL

′(X ′
iβ

∗)2] + op(1). If so, then En[XiX
′
iL

′(ξi)
2] =

L′(c)2En[XiX
′
i] + op(1) = L′(c)2E[XiX

′
i] + op(1). To see this, note that |L′(X ′

iβ
∗)2 −

L′(ξi)
2| = |L′(X ′

iβ
∗) − L′(ξi)||L′(X ′

iβ
∗) + L′(ξi)| ≤ 2|L′|∞|L′′|∞|X ′

iβ
∗ − ξi|2 ≲ |X ′

iβ
∗ −

X ′
iβ̂|2 ≤ |Xi|2|β∗ − β̂|2. Then we have

|En[XiX
′
iL

′(ξi)
2]− En[XiX

′
iL

′(X ′
iβ

∗)2]|2 ≤ En[|Xi|22|L′(X ′
iβ

∗)2 − L′(ξi)
2|]

≲ En[|Xi|32]|β∗ − β̂|2 = op(1)
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The last equality if En[|Xi|32] = op(n
1/2). Note that En[|Xi|32] ≤ En[|Xi|22] maxni=1 |Xi|2 =

Op(1)op(n
1/2) since E[|Xi|22] < ∞ by assumption, using Lemma C.8 of Cytrynbaum

(2024). Then using the claim,
√
n(β̂−β∗) = Op(1), and the linear expansion of

√
n(β̂−β∗)

above, we have shown Jn = L′(c)2n(β̂ − β∗)′E[XiX
′
i](β̂ − β∗) + op(1), which is

= L′(c)2(L′(c)−1E[XiX
′
i]
−1
√
nEn[HiXi])

′E[XiX
′
i](L

′(c)−1E[XiX
′
i]
−1
√
nEn[HiXi]) + op(1)

=
√
nEn[HiXi]

′E[XiX
′
i]
−1
√
nEn[HiXi] + op(1).

Note En[Hi] = Op(n
−1) by stratification. SinceX = (1, h),

√
nEn[HiXi]

′ = (0,
√
nEn[Hihi]

′)+

Op(n
−1/2). Also, by block inversion (E[XiX

′
i]
−1)hh = Var(hi)

−1. For some ξn = op(1)

Jn = (0,
√
nEn[Hihi]

′)E[XiX
′
i]
−1(0,

√
nEn[Hihi]

′)′ + op(1)

=
√
nEn[Hihi]

′(E[XiX
′
i]
−1)hh

√
nEn[Hihi] + op(1)

=
√
nEn[Hihi]

′Var(hi)
−1
√
nEn[Hihi] + ξn.

Define the function b(x, y) = x′Var(h)−1x + y − ϵ. Then Jn ≤ ϵ ⇐⇒ b(In, ξn) ≤
0 for In =

√
nEn[Hihi] and ξn

p→ 0. Clearly, x → b(x, 0) is continuous. Also note
E[|h|22] <∞ by assumption. Finally, for Zh ∼ N (0, E[Var(h|ψ)]), have P (b(Zh, 0) = 0) =

P (Z ′
hVar(h)

−1Zh = ϵ2) = 0 since E[Var(h|ψ)] is full rank. Then this rerandomization
satisfies all the conditions in Definition 8.2. By Lemma 8.7, the GMM estimator

√
n(θ̂−

θ0) =
√
nEn[HiΠa(Wi, θ0)] + op(1) under this rerandomization. By Theorem 8.6, have

√
nEn[HiΠa(Wi)]|Fn ⇒ N (0, Va) + R with R ∼ γ′0Zh|Zh ∈ T ∼ γ′0Zh|Z ′

hVar(h)
−1Zh ≤ ϵ

for acceptance region T = {x : b(x, 0) ≤ 0} = {x : x′ Var(h)−1x ≤ ϵ} and

Va = min
γ∈Rdh×dθ

v−1
D E[Var(Πa(W )− γ′h|ψ)].

This finishes the proof.

8.6 Covariate Adjustment

Proof of Theorem 3.12. By Lemma 8.7,
√
n(θ̂∗ − θn) may be expanded as

√
n(θ̂ − θn − En[Him(ψi, hi)]) =

√
nEn[Hi(Πa(Wi, θ0)−m(ψi, hi))] + op(1)

≡
√
nEn[Hiβ(Wi, θ0)] + op(1).

By Theorem 8.6,
√
nEn[Hiβ(Wi, θ0)]|Fn ⇒ N (0, V ) with V = v−1

D Var(β(W, θ0)). Since
β(W, θ0) = Πa(W, θ0) − γ′0h − t0(ψ) for (γ0, t0) solving Equation 3.7, this completes the
proof.

Proof of Proposition 6.2. Since θ̂adj = θ̂−En[Hiα̂
′wi] for α̂ p→ α and En[Hiwi] = Op(n

−1/2)
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by Theorem 8.4, then θ̂adj = θ̂ − En[Hiα
′wi] + op(n

−1/2) = En[Hi(Πa(Wi, θ0) − α′wi)] +

op(n
−1/2), the final equality by Lemma 8.7. The first statement now follows from Slutsky

and Theorem 8.4. The second statement follows by the same argument used in the proof
of Corollary 3.8.

Proof of Theorem 6.3. By the same argument in the proof of Proposition 6.2, we have
θ̂adj = En[Hi(Πa(Wi, θ0)−α′

0wi)]+ op(n
−1/2). Then by Theorem 8.6,

√
n(θ̂adj− θn)|Fn ⇒

N (0, V ) +R, independent with

V = v−1
D E[Var(Πa(W )− α′

0w − β′
0h|ψ)] = min

β∈Rdh×dθ
v−1
D E[Var(Πa(W )− α′

0w − β′h|ψ)].

The residual term R ∼ β′
0Zh |Zh ∈ A. Then it suffices to show that β0 = 0. Define

aΠα = Πa(W, θ0) − α′
0w. By Lemma 8.17, it further suffices to show β0 = 0 solves

E[Var(h|ψ)]β0 = E[Cov(h, aΠα|ψ)], i.e. that E[Cov(h, aΠα|ψ)] = 0. To do so, note that
E[Cov(h, aΠα|ψ)] = E[Cov(h, (Πa−α′

0w)|ψ)] = E[Cov(h,Πa|ψ)]−E[Cov(h,w|ψ)]α0. By
assumption, E[Var(w|ψ)]α0 = E[Cov(w,Πa|ψ)]. Since h ⊆ w, we have

E[Cov(h,w|ψ)]α0 = (E[Var(w|ψ)])hwα0 = (E[Var(w|ψ)]α0)hθ

= (E[Cov(w,Πa|ψ)])hθ = E[Cov(h,Πa|ψ)]

This shows that [Cov(h, aΠα|ψ)] = 0, so β0 = 0 is a solution, proving the claim. This
finishes the proof of the statement for θn. The result for θ0 follows trivially, as in Corollary
3.8.

Proof of Theorem 6.4. By Lemma 8.3, it suffices to show the result under P in Def-
inition 8.1. By Lemma 8.13, En[w̌iw̌′

i] = k−1(k − 1)E[Var(w|ψ)] + op(1). Then if
E[Var(w|ψ)] ≻ 0, we have En[w̌iw̌′

i]
−1 p→ k(k − 1)−1E[Var(w|ψ)]−1 by continuous map-

ping. We have Π̂ p→ Π by assumption. Then it suffices to show En[w̌i(Di−p)ĝ′i] = k−1(k−
1)E[Cov(w, a|ψ)] + op(1). First, claim En[w̌i(Di − p)ĝ′i] = En[w̌i(Di − p)gi(θ0)

′] + op(1),
for gi(θ) ≡ g(Di, Xi, Si, θ). By Taylor’s theorem, |gi(θ̂) − gi(θ0)|2 ≤ |∂gi

∂θ′
(θ̃i)|2|θ̂ − θ0|2,

where θ̃i may change by row. Then |En[w̌i(Di − p)(gi(θ̂) − gi(θ0))
′]|2 ≤ En[|w̌i|2|gi(θ̂) −

gi(θ0)|2] ≤ |θ̂ − θ0|2En[|w̌i|2|∂gi∂θ′
(θ̃i)|2] ≤ |θ̂ − θ0|2(En[|w̌i|22] + En[|∂gi∂θ′

(θ̃i)|22]) by Young’s
inequality. We showed En[|∂gi∂θ′

(θ̃i)|22] = Op(1) in the proof of Lemma 8.15. Similarly,
En[|w̌i|22] ≤ En[|wi|22] = Op(1) by the bound in Lemma 8.13. Since |θ̂ − θ0|2 = op(1) by
Theorem 3.5, this proves the claim.

Next, claim En[w̌i(Di − p)gi(θ0)
′] = En[w̌ia(Wi, θ0)

′] + op(1). By definition, we have
En[w̌i(Di − p)gi(θ0)

′] = En[w̌i(Di − p)ϕ(Wi, θ0)
′] + Var(D)−1En[(Di − p)2w̌ia(Wi, θ0)

′] ≡
An+Bn. Expanding (Di−p)2, Bn = Var(D)−1En[[Var(D)+(Di−p)(1−2p)]w̌ia(Wi, θ0)

′] =

En[w̌ia(Wi, θ0)
′] + 1−2p

Var(D)
En[(Di − p)w̌ia(Wi, θ0)

′]. Since ϕ = pg1 + (1 − p)g0 and a =

Var(D)(g1 − g0), apparently it suffices to show En[(Di − p)w̌igd(Wi, θ0)
′] = op(1) for
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each d = 0, 1. Since E[|gd(Wi, θ0)|22] < ∞, this follows from Lemma 8.13. Finally,
En[w̌ia(Wi, θ0)

′] = k−1(k − 1)E[Cov(wi, a(Wi, θ0)|ψi)] + op(1) since E[|w|22 + |gd|22] < ∞
and by applying Lemma 8.13 componentwise. This finishes the proof.

Lemma 8.13. Let E[w2
i + v2i ] < ∞ with wi, vi ∈ σ(Wi). Then under P in Defini-

tion 8.1, En[(Di − p)w̌iv̌i] = op(1) and En[(Di − p)w̌ivi] = op(1). Also En[w̌iv̌i] =
k−1
k
E[Cov(w, v|ψ)] + op(1).

Proof. First, note |s|−1
∑

i∈s w̌
2
i = |s|−1

∑
i∈s(wi−|s|−1

∑
j∈swj)

2 = Vars(wi) ≤ Es[w
2
i ] =

|s|−1
∑

i∈sw
2
i . Then in particular

∑
i∈s w̌

2
i ≤

∑
i∈sw

2
i and En[w̌

2
i ] ≤ En[w

2
i ]. Write

En[(Di − p)w̌iv̌i] = n−1
∑

s us for us =
∑

i∈s(Di − p)w̌iv̌i. Let Fn = σ(W1:n, πn). Then
Sn ∈ Fn, E[us|Fn] = 0 and us ⊥⊥ us′|Fn for s ̸= s′ by Lemma C.10 and Lemma
C.9 of Cytrynbaum (2024). By Lemma C.7 of Cytrynbaum (2024), it suffices to show
n−1

∑
sE[|us|1(|us| > cn)|Fn] = op(1) for some cn = o(

√
n) with cn → ∞. Note that

|us| ≤
∑

i∈s |w̌iv̌i| ≤
∑

i∈s w̌
2
i +

∑
i∈s v̌

2
i ≤

∑
i∈sw

2
i +

∑
i∈s v

2
i by Young’s inequality and

the bound above. Note that for any positive constants (ak)mk=1 we have
∑

k ak1(
∑

k ak >

c) ≤ m
∑

k ak1(ak > c/m). Applying this fact and the upper bounds gives

n−1
∑
s

E[|us|1(|us| > cn)|Fn] ≤ n−1
∑
s

E

[∑
i∈s

(w2
i + v2i )1(

∑
i∈s

(w2
i + v2i ) > cn)|Fn

]
≤ 2kn−1

∑
s

∑
i∈s

w2
i 1(w

2
i > cn/2k) + 2kn−1

∑
s

∑
i∈s

v2i 1(v
2
i > cn/2k)

The final quantity is 2kEn[w
2
i 1(w

2
i > cn/2k)] + 2kEn[v

2
i 1(v

2
i > cn/2k)] = op(1). This

follows by Markov inequality since E[En[w2
i 1(w

2
i > cn/2k)]] = E[w2

i 1(w
2
i > cn/2k)] → 0

for any cn → ∞ by dominated convergence. This proves the first statement, and the
second statement follows by setting v̌i → vi above. For the final statement, calculate∑
i∈s

w̌iv̌i =
∑
i∈s

(wi − k−1
∑
j∈s

wj)(vi − k−1
∑
j∈s

vj) = k−1(k − 1)
∑
i∈s

wivi − k−1
∑
i ̸=j∈s

viwj

Clearly n−1k−1(k − 1)
∑

s

∑
i∈swivi = k−1(k − 1)En[wivi] = k−1(k − 1)E[wivi] + op(1).

Then it suffices to show (kn)−1
∑

s

∑
i ̸=j∈s viwj = k−1(k−1)E[E[wi|ψi]E[vi|ψi]]+op(1). If

so, En[w̌iv̌i] = k−1(k−1)(E[wivi]−E[E[wi|ψi]E[vi|ψi]])+op(1) = k−1(k−1)E[Cov(wi, vi|ψi)]+
op(1) as claimed. The analysis of the term v̂10 in Lemma A.6 of Cytrynbaum (2024) shows

n−1
∑
s

∑
i ̸=j∈s

viwj = n−1
∑
s

∑
i ̸=j∈s

E[vi|ψi]E[wj|ψj] + op(1)

= (k − 1)En[E[vi|ψi]E[wi|ψi]] + op(1) = (k − 1)E[E[vi|ψi]E[wi|ψi]] + op(1).

By above work, this finishes our proof of the claim.
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8.7 Acceptance Region Optimization

Proof of Proposition 5.1. First we prove part (a). Define the function f(a) = supb∈B |b′a|.
As the sup of linear functions, f is convex (e.g. Rockafellar (1996)). Then the sublevel
set A ≡ {a : f(a) ≤ 1} is convex. Note that f(a) = f(−a), so A is symmetric. For the
main statement of the theorem, let an =

√
nEn[Hihi]. Clearly, f is positive homogeneous,

i.e. f(λa) = λf(a) for λ ≥ 0. Then note that the LHS event occurs iff f(an) ≤ ϵ ⇐⇒
f(an/ϵ) ≤ 1 ⇐⇒ an/ϵ ∈ A ⇐⇒ an ∈ ϵ · A. This proves the main statement. Suppose
B is bounded. Then by Cauchy-Schwarz f(a) ≤ |a|2 supb∈B |b|2 < ∞ for any a ∈ Rdh .
Then f is a proper function, so f is continuous by Corollary 10.1.1. of Rockafellar (1996).
Then A = f−1([0, 1]) is closed. Moreover, the open set f−1((1/3, 2/3)) ⊆ f−1([0, 1]) = A,
so A has non-empty interior. Suppose that B is open. Then B contains an open ball
B(x, δ) for some x ∈ Rdh and δ > 0. Fix a ∈ Rdh and define b(a) = x+ sgn(a′x) δ

2|a|a. By
assumption, b(a) ∈ B. Then f(a) = supb∈B |b′a| ≥ |b(a)′a| = |a′x + sgn(a′x)(δ/2)|a|| =
|a′x|+ (δ/2)|a| ≥ (δ/2)|a|. Then f(a) = supb∈B |a′b| ≥ (δ/2)|a|, so A ⊆ B(0, 2/δ).

Proof of Theorem 5.2. First we show the set A0 is feasible in Equation 5.2. We have
Lγ,A = Tγ + γ′ZhA, where Tγ ∼ N (0, V (γ)) and Tγ ⊥⊥ ZhA. Then bias(Lγ,A|Zh) =

E[Lγ,A|ZhA] = E[Tγ|ZhA]+γ′ZhA = γ′ZhA. ForA0 = ϵB◦, we have supγ∈B | bias(Lγ,A|Zh)| =
supγ∈B |γ′ZhA|. Note ZhA ∈ ϵB◦, so ZhA/ϵ ∈ B◦. Then we have

sup
γ∈B

|γ′ZhA| ≤ ϵ · sup
b∈B◦

sup
γ∈B

|γ′b| ≤ ϵ · 1.

The final inequality by definition of B◦. This shows that A0 is feasible. We claim A0 is
optimal. Suppose for contradiction that there exists A ⊆ Rdh with Leb(A△A0) ̸= 0 and
P (Zh ∈ A) > P (Zh ∈ A0). Clearly A ̸⊆ A0. Then Leb(A\A0) > 0, so P (Zh ∈ A\A0) > 0

by absolute continuity. For any x ∈ A\A0 ⊆ (ϵB◦)c, we must have supγ∈B |γ′x| > ϵ. B is
totally bounded by assumption, so as observed in the previous paragraph supγ∈B |ZhA| =
pB(ZhA), for pB continuous. Then the event {supγ∈B |ZhA| > ϵ} = {pB(ZhA) > ϵ} is
measurable. Then {supγ∈B bias(Lγ,A|Zh) > ϵ} = {supγ∈B |ZhA| > ϵ} ⊇ {ZhA ∈ A \ A0}.
Then P (supγ∈B bias(Lγ,A|Zh) > ϵ) ≥ P (Zh ∈ A \ A0) > 0, which contradicts feasibility
of A, proving the claim.

Proof of Lemma 5.6. For B = x+ ΣBp we compute the upper bound.

sup
b∈B

|a′b| = sup
u∈ΣBp

|a′x+ a′u| ≤ |a′x|+ sup
u∈ΣBp

|a′ΣΣ−1u|

= |a′x|+ sup
v∈Bp

|(Σ′a)′v| = |a′x|+ |Σ′a|q.

Before proceeding, we claim that for any z ∈ Rdh , we have maxv∈Bp v
′z = maxv∈Bp |v′z|.

Clearly maxv∈Bp v
′z ≤ maxv∈Bp |v′z|. Since Bp is compact and v → v′z continuous,
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v∗ ∈ argmaxv∈Bp |v′z| exists. Then maxv∈Bp |v′z| = |z′v∗| = z′v∗ sgn(z′v∗) = z′w for
w = v∗ sgn(z′v∗) ∈ Bp since v∗ ∈ Bp. Then maxv∈Bp |v′z| = z′w ≤ maxw∈Bp z

′w. This
proves the claim. Next, define b(a) = x + sgn(a′x)Σv(a) with v(a) ∈ argmaxv∈Bp v

′Σ′a,
which exists by compactness and continuity. Note b(a) ∈ B by construction. We may
calculate |a′b(a)| = |a′x+sgn(a′x)a′Σv(a)|. By the claim, a′Σv(a) ≥ 0. Then by matching
signs, |a′x+sgn(a′x)a′Σv(a)| = |a′x|+ | sgn(a′x)a′Σv(a)| = |a′x|+ |a′Σv(a)|. By the claim
again, this is |a′x| + a′Σv(a) = |a′x| + maxv∈Bp |a′Σv| = |a′x| + |Σ′a|q. Combining with
the upper bound above, we have shown that supb∈B |a′b| = |a′x|+ |Σ′a|q.

8.8 Inference

Proof of Theorem 7.2. By Lemma 8.3, it suffices to show the result under P in Definition
8.1. Define mi = Πgi(θ0) − Hiα

′
0wi, the population version of m̂i. Also define m1i =

Πg1i(θ0)− α′
0wi/p and m0i = Πg0i(θ0) + α′

0wi/(1− p). We may expand

ϕb ≡ pm1i + (1− p)m0i = pg1i + (1− p)g0i = Πϕ(W, θ0),

ab ≡ vD(m1i −m0i) = Πa(W, θ0)− α′
0wi.

By Theorem 6.3, we need to estimate V = Var(ϕb) + v−1
D E[Var(ab|ψ)] = Var(ϕb) +

v−1
D E[aba

′
b]− v−1

D E[E[ab|ψ]E[ab|ψ]′] ≡ V1 − V2. We expand V1 = Var(ϕb) + v−1
D E[aba

′
b] as

V1 = Var(pm1i + (1− p)m0i) + vDE[(m1i −m0i)(m1i −m0i)
′]

= E[(pm1i + (1− p)m0i)(pm1i + (1− p)m0i)
′] + vDE[(m1i −m0i)(m1i −m0i)

′]

= (p2 + vD)E[m1im
′
1i] + ((1− p)2 + vD)E[m0im

′
0i]

= pE[m1im
′
1i] + (1− p)E[m0im

′
0i] = Varn(m̂i) + op(1).

The second equality since E[ϕb] = 0, and the final equality by Lemma 8.14. By Lemma
8.15, we also have

V2 = v−1
D E[E[ab|ψ]E[ab|ψ]′] = vD(E[E[m1i|ψ]E[m1i|ψ]′] + E[E[m0i|ψ]E[m0i|ψ]′])

− vD(E[E[m1i|ψ]E[m0i|ψ]′] + E[E[m0i|ψ]E[m1i|ψ]′])

= vD(v̂1 + v̂0 − v̂10 − v̂′10) + op(1).

This finishes the proof.

Proof of Theorem 7.3. By Lemma 8.3, it suffices to show the result under P in Defini-
tion 8.1. With notation as in the proof of Theorem 7.2, by Theorem 6.3, c′(θ̂ − θ0) ⇒
N (0, Va(c)) with variance Va(c) = v−1

D c′E[Var(ab|ψ)]c for ab = vD(m1i − m0i). Then
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Va(c) = vDc
′E[Var(m1i −m0i|ψ)]c may be expanded as

vD · c′(E[Var(m1i|ψ)] + E[Var(m0i|ψ)]− 2E[Cov(m1i,m0i|ψ)])c.

Note that by Cauchy-Schwarz and Jensen we have the bound

− 2c′E[Cov(m1i,m0i|ψ)]c ≤ 2|E[Cov(c′m1i, c
′m0i|ψ)]|

≤ 2E[Var(c′m1i|ψ)1/2Var(c′m0i|ψ)1/2] ≤ 2(E[Var(c′m1i|ψ)]E[Var(c′m0i|ψ)])1/2

= 2(c′E[Var(m1i|ψ)]c · c′E[Var(m0i|ψ)]c)1/2.

Then we bound

Va(c) ≤ V̄a(c) ≡ vD[(c
′E[Var(m1i|ψ)]c)1/2 + (c′E[Var(m0i|ψ)]c)1/2]2.

Note E[Var(m1i|ψ)] = E[m1im
′
1i]−E[E[m1i|ψi]E[m1i|ψi]′] = En[

Di
p
m̂im̂

′
i]− v̂1 + op(1) by

Lemma 8.14 and Lemma 8.15. Similarly, E[Var(m0i|ψ)] = En[
1−Di
1−p m̂im̂

′
i] − v̂0 + op(1).

Then for û1 = En[
Di
p
m̂im̂

′
i]− v̂1 and û0 = En[

1−Di
1−p m̂im̂

′
i]− v̂0 by continuous mapping

V̂a(c) = vD([c
′û1c]

1/2 + [c′û0c]
1/2)2

p→ V̄a(c) ≥ Va(c).

This finishes the proof.

Comparison of Variances. The superpopulation variance is

V (c) = Var(c′ϕb) + vD · (E[Var(c′m1i|ψ)] + E[Var(c′m0i|ψ)]− 2E[Cov(c′m1i, c
′m0i|ψ)])

= p2Var(c′m1i) + (1− p)2Var(c′m0i) + vD · (E[Var(c′m1i|ψ)] + E[Var(c′m0i|ψ)]).

Then the variance gap V (c)− Va(c) is

p2Var(c′m1i) + (1− p)2Var(c′m0i)− 2vD(E[Var(m1i|ψ)] · E[Var(m0i|ψ)])1/2

= p2Var(E[c′m1i|ψi]) + (1− p)2Var(E[c′m0i|ψi])

+ (pE[Var(c′m1i|ψ)]1/2 − (1− p)E[Var(c′m0i|ψ)]1/2)2 ≥ 0.

Lemma 8.14. Impose Assumptions 3.1, 3.2, 7.1. Then under P in Definition 8.1, the
following hold:

(a) En[
Di
p
m̂im̂

′
i] = E[m1im

′
1i] + op(1) and En[1−Di1−p m̂im̂

′
i] = E[m0im

′
0i] + op(1).

(b) Varn(m̂i) = pE[m1im
′
1i] + (1− p)E[m0im

′
0i] + op(1).

Proof. For (a), consider the first statement. We may expand this as

En[(Di/p)m̂im̂
′
i] = En[(Di/p)m̂i(m̂i −mi)

′] +En[(Di/p)(m̂i −mi)m
′
i] +En[(Di/p)mim

′
i].
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For gi = gi(θ0), we have |m̂i − mi|2 = |Π̂ĝi − Πgi − Hi(α̂ − α)′wi|2 ≲ |Π̂ − Π|2|ĝi|2 +
|Π|2|ĝi − gi|2 + |α̂− α0|2|wi|2. Then the first term above has

|En[(Di/p)m̂i(m̂i −mi)
′]| ≤ |Π̂− Π|2En[|m̂i|2|ĝi|2] + |Π|2En[|m̂i|2|ĝi − gi|2]

+ |α̂− α0|2En[|m̂i|2|wi|2].

We claim this term is op(1). Note that |Π̂ − Π|2 = op(1) and |α̂ − α0|2 = op(1) by
assumption. Then applying Cauchy-Schwarz, it suffices to show En[|m̂i|22+ |ĝi|22+ |wi|22] =
Op(1) and En[|ĝi − gi|22] = op(1). First, note En[|wi|22] = Op(1) since E[|w|22] < ∞. Next,
note En[|m̂i|22] = En[|Π̂ĝi − Hiα̂

′wi|22] ≤ 2En[|Π̂ĝi|22] + 2En[|α̂′wi|22] ≤ 2|Π̂|22En[|ĝi|22] +
2|α̂|22En[|wi|22], so clearly it suffices to show En[|ĝi|22] = Op(1) to handle this term.

We start by showing that En[|ĝi − gi|22] = op(1). By the mean value theorem gi(θ̂) −
gi(θ0) =

∂gi
∂θ′

(θ̃i)(θ̂ − θ0), where θ̃i ∈ [θ0, θ̂] may change by row. Then we have En[|gi(θ̂)−
gi(θ0)|22] ≤ |θ̂ − θ0|22En[|

∂gi
∂θ′

(θ̃i)|22], so it suffices to show En[|∂gi∂θ′
(θ̃i)|22] = Op(1). Since

gi(θ) = Dig1i(θ)+ (1−Di)g0i(θ) for all θ, |∂gi
∂θ′

(θ̃i)|22 ≤ 2|∂g1i
∂θ′

(θ̃i)|22+2|∂g0i
∂θ′

(θ̃i)|22. Define the
event Sn = {θ̂ ∈ U}. Then on Sn we have

|∂g1i
∂θ′

(θ̃i)|22 + |∂g0i
∂θ′

(θ̃i)|22 ≤ |∂g1i
∂θ′

(θ̃i)|2F + |∂g0i
∂θ′

(θ̃i)|2F =
∑
d=0,1

dg∑
k=1

|∇gkdi(θ̃ik)|22

≤
∑
d=0,1

dg∑
k=1

sup
θ∈U

|∇gkdi(θ)|22 ≡ Ūi.

Then En[|∂gi∂θ′
(θ̃i)|22]1(Sn) ≤ En[Ūi]1(Sn) = Op(1) since E[supθ∈U |∇gkdi(θ)|22] < ∞ by

assumption. Then En[|∂gi∂θ′
(θ̃i)|22] = Op(1) since P (Scn) → 0. This finishes the proof of

En[|ĝi − gi|22] = op(1). Finally, the claim En[|ĝi|22] = Op(1) is clear since En[|ĝi|22] ≤
2En[|ĝi − gi|22] + 2En[|gi|22] = op(1) +Op(1) by the preceding claim.

Then we have shown |En[(Di/p)m̂i(m̂i−mi)
′]| = op(1) and En[(Di/p)(m̂i−mi)m

′
i] =

op(1) by an identical argument. This shows that En[(Di/p)m̂im̂
′
i] = En[(Di/p)mim

′
i] +

op(1). Next, we have En[(Di/p)mim
′
i] = En[(Di/p)m1im

′
1i] = En[m1im

′
1i] + op(1) =

E[m1im
′
1i] + op(1). The first equality is by definition of mi,m1i. The second equality

by Lemma A.2 of Cytrynbaum (2024) and the third equality by vanilla WLLN, using
E[|mi|22] < ∞. This finishes our proof of the first statement of (a), and the second
statement follows by symmetry.

For (b), note En[m̂im̂
′
i] = pEn[

Di
p
m̂im̂

′
i]+(1−p)En[1−Di1−p m̂im̂

′
i] = pE[Di

p
m1im

′
1i]+(1−

p)E[m0im
′
0i] + op(1) by part (a) of the lemma. Moreover, En[m̂i] = En[Π̂ĝi −Hiα̂

′wi] =

Π̂En[ĝi]+op(1). Note that En[ĝi] = ĝ(θ̂) and ĝ(θ̂)− ĝ(θ0) = g0(θ̂)−g0(θ0)+op(1) = op(1).
The first equality since |ĝ− g0|Θ,∞ = op(1) and the second by continuous mapping, using
Lemma 8.8. Then Varn(m̂i) = pE[m1i(θ0)m1i(θ0)

′] + (1 − p)E[m0i(θ0)m0i(θ0)
′] + op(1),
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finishing the proof.

Lemma 8.15. Require Assumptions 3.1, 3.2, 7.1. Then under P in Definition 8.1,
the variables in the statement of Theorem 7.2 have v̂10

p→ E[E[m1i(θ0)|ψ]E[m0i(θ0)|ψ]′],
v̂1

p→ E[E[m1i(θ0)|ψ]E[m1i(θ0)|ψ]′], and v̂0
p→ E[E[m0i(θ0)|ψ]E[m0i(θ0)|ψ]′].

Proof. Let v̂o1 denote the oracle version of v̂1, substituting mi = Πgi(θ0) − Hiα
′
0wi for

m̂i, and similarly for v̂o0, v̂o10. In Lemma A.6 of Cytrynbaum (2024), set Ai = m1i and
Bi = m1i. Applying the lemma componentwise, v̂o1

p→ E[E[m1i(θ0)|ψ]E[m1i(θ0)|ψ]′],
v̂o0

p→ E[E[m0i(θ0)|ψ]E[m0i(θ0)|ψ]′], and v̂o10
p→ E[E[m1i(θ0)|ψ]E[m0i(θ0)|ψ]′]. Then it

suffices to show that v̂1 − v̂o1 = op(1), v̂0 − v̂o0 = op(1), and v̂10 − v̂o10 = op(1). For the first
statement, expand

v̂1 − v̂o1 = (np)−1
∑
s∈Sνn

1

a(s)− 1

∑
i ̸=j∈s

DiDj(m̂im̂
′
j −mim

′
j)

Expand m̂im̂
′
j−mim

′
j = m̂i(m̂

′
j−m′

j)+(m̂i−mi)m
′
j ≡ Aij+Bij. Using triangle inequality,

a(s)−1 ≥ 1 and p > 0, we calculate v̂o1− v̂1 ≲ n−1
∑

s∈Sνn

∑
i,j∈s |Aij|2+ |Bij|2 ≡ An+Bn.

First consider Bn. Using that |xy′|2 ≤ |x|2|y|2, we have

|Bij|2 ≤ |m̂i −mi|2|mj|2 = |Π̂ĝi − Πgi −Hi(α̂− α)′wi|2|mj|2
≤ |Π̂− Π|2|ĝi|2|mj|2 + |Π|2|ĝi − gi|2|mj|2 + |α̂− α0|2|wi|2|mj|2.

Then Bn = n−1
∑

s∈Sνn

∑
i,j∈s |Π̂−Π|2|ĝi|2|mj|2+ |Π|2|ĝi−gi|2|mj|2+ |α̂−α0|2|wi|2|mj|2 ≡

Bn1 +Bn2 +Bn3. Consider Bn1. This is

Bn1 = |Π̂− Π|2 · n−1
∑
s∈Sνn

∑
i,j∈s

|ĝi|2|mj|2 ≤ |Π̂− Π|2 · (2n)−1
∑
s∈Sνn

∑
i,j∈s

|ĝi|22 + |mj|22

≤ |Π̂− Π|2 · (2n)−1
∑
s∈Sνn

|s|
∑
i∈s

|ĝi|22 + |mi|22 ≲ |Π̂− Π|2En[|ĝi|22 + |mi|22].

By an identical argumentBn3 ≲ |α̂−α0|2En[|wi|22+|mi|22]. Then to showBn1+Bn3 = op(1),
suffices to show En[|wi|22 + |mi|22 + |ĝi|22] = Op(1). That En[|wi|22 + |ĝi|22] = Op(1) was
shown in the proof of Lemma 8.14. Note En[|mi|22] = En[|Πgi−Hiα

′
0wi|22] ≤ 2En[|Πgi|22]+

2En[|α′
0wi|22] ≤ 2|Π|22En[|gi|22]+2|α0|22En[|wi|22] = Op(1) since E[|gi|22] <∞ by assumption.

Then Bn1+Bn3 = op(1). Finally, consider Bn2. By the mean value theorem gi(θ̂)−gi(θ0) =
∂gi
∂θ′

(θ̃i)(θ̂ − θ0), where θ̃i ∈ [θ0, θ̂] may change by row. Then we have

Bn3 = n−1
∑
s∈Sνn

∑
i,j∈s

|Π|2|ĝi − gi|2|mj|2 ≤ |θ̂ − θ0|2|Π|2 · n−1
∑
s∈Sνn

∑
i,j∈s

|∂gi
∂θ′

(θ̃i)|2|mj|2

≲ |θ̂ − θ0|2|Π|2En[|
∂gi
∂θ′

(θ̃i)|22 + |mi|22] = op(1).
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The final equality follows since En[|∂gi∂θ′
(θ̃i)|22 = Op(1), as shown in the proof of Lemma

8.14. Then we have shown Bn = op(1), and An = op(1) is identical. This completes the
proof that v̂1 − v̂o1 = op(1), and the proof of v̂0 − v̂o0 = op(1), and v̂10 − v̂o10 = op(1) are
identical.

8.9 Lemmas

Proposition 8.16 (Lévy). Consider probability spaces (Ωn,Gn, Pn) and σ-algebras Fn ⊆
Gn. We say An ∈ Rd has An|Fn ⇒ A if ϕn(t) ≡ E[eit

′An|Fn] = E[eit
′A|Fn]+op(1) for each

t ∈ Rd. If g : Rd → C is bounded, measurable, and P (A ∈ {a : g(·) discontinuous at a}) =
0 then we have

E[g(An)|Fn] = E[g(A)] + op(1). (8.2)

See Cytrynbaum (2021) for the proof.

Lemma 8.17. The following statements hold

(a) There exists γ0 ∈ Rdh×da solving E[Var(h|ψ)]γ0 = E[Cov(h, a|ψ)]. For any solution,
we have E[Var(a− γ′0h|ψ)] ⪯ E[Var(a− γ′h|ψ)] for all γ ∈ Rdh×da.

(b) Let Z = (Za, Zh) a random variable with Var(Z) = E[Var((a, h)|ψ)] ≡ Σ and
define Z̃a = Za− γ′0Zh. Then Cov(Z̃a, Zh) = 0. In particular, if (Za, Zh) are jointly
Gaussian, then Z̃a is Gaussian with Z̃a ⊥⊥ Zh.

Proof. In the notation of (b), it suffices to show Σhhγ0 = Σha. If rank(Σhh) = 0 then
Zh = ch a.s. for constant ch and Σha = Cov(Zh, Za) = 0. Then any γ ∈ Rdh×da is
a solution. Then suppose rank(Σhh) = r ≥ 1. Let Σhh = UΛU ′ be the compact
SVD with U ∈ Rdh×r and rank(Λ) = r, and U ′U = Ir. We claim Zh = UU ′Zh a.s.
Calculate Var((UU ′ − I)Zh) = (UU ′ − I)UΛU ′(UU ′ − I) = 0. Note that Σhhγ =

Σha ⇐⇒ Var(Zh)γ = Cov(Zh, Za) ⇐⇒ Var(UU ′Zh)γ = Cov(UU ′Zh, Za) ⇐⇒
U [Var(U ′Zh)U

′γ−Cov(U ′Zh, Za)] = 0. Define Z̄h = U ′Zh and note Var(Z̄h) = U ′UΛU ′U =

Λ ≻ 0. Then let γ̄ = Var(Z̄h)
−1Cov(Z̄h, a) so that Var(Z̄h)γ̄ − Cov(Z̄h, Za) = 0. Then

it suffices to find γ such that U ′γ = γ̄. Since U ′ : Rdh → Rr is onto, there exists γk

with U ′γk = γ̄k. Then let γk0 ∈ [γk + ker(U ′)] and set γ0 = (γk0 : k = 1, . . . , da), so that
U ′γ0 = γ̄. Then Σhhγ0 = Σha by work above. For the optimality statement, calculate

E[Var(a− γ′h|ψ)] = Σaa − Σahγ − γ′Σha + γ′Σhhγ = Σaa − Σah(γ − γ0 + γ0)

− (γ − γ0 + γ0)
′Σha + γ′Σhhγ = Σaa − 2γ′0Σhhγ0 − (γ − γ0)

′Σha − Σah(γ − γ0)

+ γ′Σhhγ ∝ −(γ − γ0)
′Σhhγ0 − γ′0Σhh(γ − γ0) + γ′Σhhγ = −(γ − γ0)

′Σhhγ0

− γ′0Σhh(γ − γ0) + γ′Σhhγ + (γ − γ0 + γ0)
′Σhh(γ − γ0 + γ0)

= γ′0Σhhγ0 + (γ − γ0)
′Σhh(γ − γ0).

50



Then E[Var(a− γ′h|ψ)]−E[Var(a− γ′0h|ψ)]) = (γ− γ0)
′Σhh(γ− γ0) and for any a ∈ Rda

we have a′(γ − γ0)
′Σhh(γ − γ0)a ≥ 0 since Σhh ⪰ 0. This proves the claim. Finally, we

have Cov(Z̃a, Zh) = Cov(Za − γ′0Zh, Zh) = Σah − γ′0Σhh = 0. The final statement follows
from well-known facts about the normal distribution.

Lemma 8.18 (SVD). Suppose Σ ∈ Rm×m is symmetric PSD with rank(Σ) = r. Then
Σ = UΛU ′ for U ∈ Rm×r with U ′U = Ir and Λ diagonal.

Proof. Since Σ is symmetric PSD, there exists B′B = Σ for rank(B) = r. Let V AU ′

be the compact SVD of B, with A diagonal. Then Σ = B′B = UA2U ′ ≡ UΛU ′ with
U ′U = Ir.

Lemma 8.19. Consider probability spaces (Ωn,Gn, Pn) and σ-algebras Fn ⊆ Gn. Suppose
0 ≤ An ≤ B <∞ and An = op(1). Then E[An|Fn] = op(1).

Proof. For any ϵ > 0, note that E[An|Fn] = E[An1(An ≤ ϵ)|Fn] +E[An1(An > ϵ)|Fn] ≤
ϵ + BP (An > ϵ|Fn). We have E[P (An > ϵ|Fn)] = P (An > ϵ) = o(1) by tower law and
assumption. Then P (An > ϵ|Fn) = op(1) by Markov inequality. Then we have shown
E[An|Fn] ≤ ϵ+Tn(ϵ) with Tn(ϵ) = op(1). Fix δ > 0 and let ϵ = δ/2. Then P (E[An|Fn] >

δ) ≤ P (δ/2 + Tn(δ/2) > δ) = P (Tn(δ/2) > δ/2) = o(1) since Tn(δ/2) = op(1). Since δ
was arbitrary, we have shown that E[An|Fn] = op(1).

Lemma 8.20. An = Op(1) ⇐⇒ An = op(cn) for every sequence cn → ∞.

Proof. It suffices to consider An ≥ 0. The forward direction is clear. For the backward
direction, suppose for contradiction that there exists ϵ > 0 such that supn≥1 P (An >

M) > ϵ for all M . Then find nk such that P (Ank > k) > ϵ for each k ≥ 1. We claim
nk → ∞. Suppose not and lim infk nk ≤ N <∞. Then let k(j) → ∞ such that nk(j) ≤ N

for all j. Choose M ′ < ∞ such that P (An > M ′) < ϵ for all n = 1, . . . N . Then for
k(j) > M ′ we have P (Ank(j) > k(j)) ≤ P (Ank(j) > M ′) < ϵ, which is a contradiction.
Then apparently limk nk = +∞. Define Zj = {i : i ≥ j}. Regard the sequence nk as
map n : N → N. For m ∈ Image(n), define n†(m) = minn−1(m). It’s easy to see that
n†(mk) → ∞ for {mk}k ⊆ Image(n) with mk → ∞. Then write

sup
k≥j

P (Ank > k) = sup
m∈n(Zj)

sup
a∈n−1(m)

P (Am > a) ≤ sup
m∈n(Zj)

P (Am > n†(m))

Note Amk/n†(mk) = op(1) by assumption for any {mk}k ⊆ Image(n) with mk → ∞.
Then we have

lim sup
k

P (Ank > k) = lim
j

sup
k≥j

P (Ank > k) = lim
j

sup
m∈n(Zj)

P (Am > n†(m)) = o(1).

This is a contradiction, which completes the proof.
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Proof of Lemma 8.3. The first set of statements since Q = P on Fn by definition. Let
c = P (Zh ∈ T , with c > 0 by assumption. Define Sn = {P (In ∈ Tn|Fn) ≥ c/2}. Then by
Lemma 8.5, P (In ∈ Tn|Fn)

p→ P (Zh ∈ T ) = c, so P (Sn) → 1. We have the upper bound

1(Sn)Q(Bn|Fn) = 1(Sn)P (Bn|In ∈ Tn,Fn) = 1(Sn)
P (Bn, In ∈ Tn|Fn)

P (In ∈ Tn|Fn)

≤ (c/2)−11(Sn)P (Bn, In ∈ Tn|Fn) ≤ (c/2)−1P (Bn|Fn).

The first equality by definition of Q. The first inequality by the definition of Sn. The
final inequality by additivity of measures. Then for rn ≡ (1− 1(Sn))Q(Bn|Fn), we have
Q(Bn|Fn) = 1(Sn)Q(Bn|Fn) + rn. Note that |rn| ≤ 1 and rn

p→ 0, so EQ[rn] = o(1) by
modes of convergence. Then expand Q(Bn) as

EQ[Q(Bn|Fn)] = EQ[1(Sn)Q(Bn|Fn)] + EQ[rn] ≤ (c/2)−1EQ[P (Bn|Fn)] + o(1)

= (c/2)−1EP [P (Bn|Fn)] + o(1) = (c/2)−1P (Bn) + o(1).

The second equality follows from part (a), and the final equality by tower law. The op(1)
results follow by setting Bn = {Rn > ϵ}. The Op(1) results follow by the op(1) statement
and Lemma 8.20.
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