
USING LATTICE GEOMETRY TO FIND ALL STABLE ALLOCATIONS

MAX CYTRYNBAUM

Abstract. In this paper, we give an algorithm to find all core allocations in a general
model of multilateral many-to-many matching with contracts. We develop a notion of
“information sharing” in lattices, showing how lattice geometry can be exploited to produce
a relatively fast algorithm that returns the full set of core outcomes. We show how to apply
our technique to more general economic problems and, as an application, construct the first
algorithm to find all stable allocations in bilateral matching with contracts markets when
agents have substitutable preferences.

I am very grateful to Scott Kominers for guidance and encouragement, as well as for providing the
inspiration for this project.

1

2 MAX CYTRYNBAUM

1. Introduction

1.1. Introduction and Motivation. This paper extends an algorithm of Echenique and
Yenmez (2013) to find all core allocations in a general model of multilateral many-to-many
matching with contracts. Our model nests a large number of previous matching models. We
show that, as in the case of matching with strict preferences over colleagues in Echenique
and Yenmez (2013), core allocations can be characterized in terms of the fixed points of an
antitone operator on a certain complete lattice. Our main contribution is to show how to
fully exploit the geometric relationships implied by the problem’s lattice structure. Specifi-
cally, we develop a notion of “information sharing” in lattices, showing how standard graph-
theoretic techniques can be used to efficiently combine the geometric information created
while searching for the full lattice of stable allocations. We construct and prove correctness
for an algorithm that implements this idea, and show how this approach may be extended
to a wider class of economic problems for which there is a complete lattice structure. To
conclude, we restrict our attention to two-sided many-to-many matching with contracts with
substitutable preferences, showing how information sharing may be used to find all stable
allocations.

There are a variety of results showing the existence of a lattice of stable outcomes when
preferences satisfy a substitutability condition. Usually, these results proceed by showing
that substitutability implies the existence of an isotone operator on a complete lattice con-
taining the stable matchings1. By iteration from a maximal element, one eventually arrives
at an extremal stable matching. However, in the absence of substitutability, not only are
stable matchings not guaranteed to exist, but the usual isotone operator is not guaranteed
to find any that do exist. Moreover, even if substitutability does hold, it is often unclear
how to find any but the extremal stable matchings.

Fortunately, our results show that, even without a substitutability guarantee, there still
exists a relatively fast algorithm that either returns all core allocations or shows that none
exist. The core is a natural replacement for stability when looking for reasonable economic
outcomes in matching markets that either lack a natural bilateral structure or in which
agents’ preferences may not satisfy substitutability. Moreover, for bilateral matching with
contracts markets where substitutability is guaranteed, the information sharing technique
that we develop can be modified to produce an algorithm that finds all stable allocations,
not just the extremal ones.

The information sharing idea developed in this paper is also of independent theoretical
interest. Lattice structures arise frequently in economics, but it is often unclear how to
make full use of a problem’s lattice geometry. Section 4.2 shows that, for a certain class
of economic problems, lattice geometry creates natural redundancies and shared geometric
information that can be exploited to quickly compute objects of economic interest.

1.2. Related Literature. This paper is related to a broad literature on finding stable
outcomes. Roth and Peranson (1999) is a well-known computational study examining the
existence of stable outcomes in the National Residency Matching Program. For classical
matching problems, Mart́ınez et al. (2004) develops an algorithm for finding all stable match-
ings in a many-to-many matching market, while McVitie and Wilson (1971) and Irving and
Leather (1986) show how to find all stable matchings in one-to-one matching markets. More
recently, papers such as Sethuraman et al. (2006) and Schwarz and Yenmez (2011) have

1See, for instance, Hatfield and Milgrom (2005) or Hatfield and Kominers (2012).

USING LATTICE GEOMETRY TO FIND ALL STABLE ALLOCATIONS 3

shown how to find “median” stable matchings, which in some sense balance the interest of
market participants. See Gusfield and Irving (1989) for a review of algorithms for finding all
core matchings in the classical setting.

The algorithm developed in this paper is an extension of antitone operator approach
developed in Echenique (2007) and Echenique and Yenmez (2013). Kominers (2010) shows
that this approach finds all stable matchings in classical matching, while Kojima (2015)
shows how to extend the approach to the case of matching with couples.

2. Characterizing Core Allocations

In this section, we show how core allocations can be characterized as the fixed points of
an antitone operator on a certain complete lattice. First, we give details on our model and
notation.

2.1. Model and Solution Concepts. We consider a finite set of contracts X, each of
which is associated with at least one agent a ∈ A. We call a subset Y ⊆ X an allocation,
and let 2X denote the set of all allocations. Let d(x) be the set agents associated with a
contract x ∈ X, and extend this definition to allocations by writing d(Y) ≡

⋃
y∈Y d(y). Note

that, in general, we may have |d(x)| > 2 for multilateral contracts. For instance, we can
view X as the set of potential multilateral relationships in a trading network2. In particular,
we do not impose a two-sided market structure in this section.

For a ∈ A, we let Ya = {y ∈ Y : a ∈ d(y)} denote the set of contracts associated with that
agent (note that we may have Ya = ∅). Thus, 2Xa denotes the set of all allocations naming
an agent a ∈ A. We assume that each a ∈ A has strict preferences over Y ∈ 2Xa , where the
utility of an allocation is given by the one-to-one function Ua : 2Xa → R. Let �a denote the
strict preference relation induced by these utility functions over bundles Y ∈ 2Xa , with �a
denoting the weak relation. Thus, Y �a Z ⇐⇒ Y �a Z or Y = Z. Throughout this paper,
we will assume that ∅a ∈ X for all a ∈ A, where ∅a denotes a being unmatched. Note that
d(∅a) = {a}.

An allocation Y ⊆ X is said to be in the core3 if there does not exist a non-empty blocking
set Z ⊆ X such that

Ub(Zb) ≥ Ub(Yb) ∀b ∈ d(Z)

where at least one of the above inequalities holds strictly. We denote the core by C(X,U).
Similarly, an allocation Y is said to be in the weak core if there does not exist a non-empty

blocking set Z ⊆ X such that

Ub(Zb) > Ub(Yb) ∀b ∈ d(Z)

We denote the weak core by WC(X,U). Note that WC(X,U) ⊇ C(X,U).
It is easy to see that core allocations need not exist in such a general setting. Our approach

will be to construct an algorithm that either finds all core allocations or shows that none
exist.

2This setting is thus a slight generalization of Hatfield and Kominers (2012) model of bilateral contracts
in a trading network.

3The core concept defined here is sometimes also called the strong core or “core by weak domination”; see
Roth and Sotomayor (1996), for instance. Here, we follow the core concept used in Echenique and Yenmez
(2013).

4 MAX CYTRYNBAUM

2.2. Fixed Preallocations and the Core. We build an appropriate framework in which
to generalize the fixed point construction discussed above. We start by generalizing the
classical notion of a prematching.

Definition 2.1 (Preallocation). We call a map φ : A→ 2X a preallocation if φ(a) ∈ 2Xa for
all a ∈ A. Let (2X)A denote the set of all preallocations.

Intuitively, a preallocation assigns each agent to a bundle of contracts naming him or her.
We may think of φ(a) as the set of contracts “held” by agent a.

We can associate each allocation Y ⊆ X with a unique preallocation φY in a natural way
by setting φY (a) = Ya for a ∈ d(Y) and φY (a) = ∅a otherwise.

Remark 2.2. Note, however, that not all preallocations can be derived from allocations in
this way. For example, consider the case where ∅ 6= φ(a)b 6= φ(b)a. In the preallocation φ,
a holds contracts naming b that are not in the bundle of contracts held by b naming a. In
particular, there does not exist an allocation Y such that φ = φY .

With this example in mind, we say that φ ∈ (2X)A is a coordinated preallocation if there
exists an allocation Y such that φ = φY . We denote the set of all cooordinated preallocations
by CP ⊆ (2X)A. Our method proceeds by identifying allocations Y ∈ C(X,U) with fixed
points of an operator on preallocations, generalizing the construction in Echenique and
Yenmez (2013).

For each agent a ∈ A, we define

V (φ, a) = {Z ∈ 2Xa : ∃Y ∈ 2X s.t. Ya = Z, Yb �b φ(b) ∀b ∈ d(Y) \ {a}}
Intuitively, V (φ, a) is the possibility set for an agent a at a preallocation φ. It contains all

bundles of contracts naming a that are part of a larger economy Y in which every other agent
b ∈ d(Y) weakly prefers their contracts under Y to their contracts under the preallocation
φ.

Next, we define an operator T : (2X)A → (2X)A by setting Tφ(a) = maxV (φ, a), where
the maximum is taken under the preference relation �a for each a ∈ A. Note that ∅a ∈
V (φ, a) for any φ ∈ (2X)A, so T is well-defined. Let E(T) denote the fixed points of T .
Define E(T) = {Y ∈ 2X : φY ∈ E(T)}, the collection of allocations Y whose corresponding
preallocation φY is fixed by T .

Before our first result, we note a simple fact: if φ ∈ CP, then φ(a) ∈ V (φ, a). To see this,
note that φ ∈ CP means that there exists Y ⊆ X with φ = φY . Then Y is an allocation
satisfying the conditions in V (φY , a), so that Ya = φ(a) ∈ V (φ, a). With the definitions
above, we have a simple result

Lemma 2.3. E(T) = C(X,U)

Proof. First, suppose that Y 6∈ C(X,U). Then by definition, there exists some blocking
allocation ∅ 6= Z ⊆ X such Zb �b Yb for all b ∈ d(Z). Let a ∈ d(Z) be such that the inequality
above is strict, and consider φ = φY . In particular, Zb �b φY (b) for all b ∈ d(Z)\{a}, so that
Za ∈ V (φY , a). Then TφY (a) = maxV (φY , a) �a Za �a Ya = φY (a), so TφY (a) 6= φY (a),
and Y 6∈ E(T).

Suppose, conversely, that Y 6∈ E(T) so that φY 6∈ E(T). Then there exists an agent a ∈ A
such that TφY (a) = Za 6= φY (a) for some allocation Z. By the definition of V (φY , a), we
have Zb �b φY (b) = Yb for b ∈ d(Z) \ {a}. We know φY is coordinated, so by the simple fact

USING LATTICE GEOMETRY TO FIND ALL STABLE ALLOCATIONS 5

above φY (a) ∈ V (φY , a). Then Za = TφY (a) �a φY (a) = Ya. Then Z is a blocking coalition
for Y , so Y 6∈ C(X,U). �

Thus, we have identified C(X,U) with the set of coordinated preallocations φ ∈ CP such
that Tφ = φ. This result shows that an algorithm that finds all φ ∈ E(T) will also find all
core matchings.

However, if there are uncoordinated preallocations that are also fixed by T , such an algo-
rithm may return extraneous solutions not associated with any core matching. The following
lemma, which is essential for the construction of our algorithm, shows that there are no such
preallocations. Note that this result significantly generalizes the corresponding lemma in
Echenique and Yenmez (2013) and also subsumes the main result of Kojima (2015).

Lemma 2.4. E(T) ⊆ CP

Proof. We begin with an important fact that will be used repeatedly. Suppose that φ ∈ E(T).
Then for any a ∈ A, we have φ(a) = Tφ(a) ∈ V (φ, a). Thus, there exists an allocation Y
such that Ya = φ(a), and Yb �b φ(b) for all b ∈ d(Y) \ {a}. Since Ya = φ(a), then in fact
Yb �b φ(b) holds for all agents b ∈ d(Y). For any b ∈ d(Y), Y then satisfies the conditions in
the definition of V (φ, b), so Yb ∈ V (φ, b). Therefore, φ(b) = Tφ(b) � Yb � φ(b), so equality
holds throughout. In particular, Yb = φ(b) for all b ∈ d(Y).

Fix a1 ∈ A. Since φ ∈ E(T), the argument above shows that there exists an allocation
Y such that Ya1 = φ(a1), and, in particular, Yb = φ(b) for all b ∈ d(Y). Therefore, the
collection of global allocations available to a1 at φ

G(φ, a1) = {Y ∈ 2X : Ya1 = φ(a1), Yb � φ(b) ∀b ∈ d(Y)}
is non-empty, so there exists an allocation

Y ∈ argmax
Z∈G(φ,a1)

|d(Z)|

Let A1 = d(Y). If A1 = A, we are done, since then by the construction above Ya = φ(a)
for all a ∈ A, so φ = φY and φ ∈ CP.

Then assume that A1 6= A, and pick a2 ∈ A \ A1. By the fact at the beginning of the
proof, there exists an allocation Z such that Za2 = φ(a2), and, in fact, φ(b) = Zb for all
b ∈ d(Z). Define A2 = d(Z) ∩Ac1, which is non-empty by construction. Let b ∈ A2. We will
show that d(φ(b)) ∩A1 = ∅. That is, under the preallocation φ, agent b ∈ A2 is not holding
any contracts that name agents in A1.

Suppose not, so there exists c ∈ A1 ∩ d(φ(b)). Then, in particular, c ∈ d(φ(b)) = d(Zb) ⊆
d(Z), so applying the fact proved at the beginning, Zc = φ(c) = Yc. Since c ∈ d(Zb), there
exists a contract z ∈ Zc naming both c and b. Then b ∈ Zc = Yc, so b ∈ d(Yc) ⊆ d(Y) = A1,
so b ∈ A1 ∩A2 = ∅. This is a contradiction, so it must be the case that d(φ(b))∩A1 = ∅ for
all b ∈ A2.

Define S =
⋃
b∈A2

φ(b). We have just shown that d(S) ⊆ Ac1. We also have d(S) =⋃
b∈A2

d(φ(b)) =
⋃
b∈A2

d(Zb) ⊆ d(Z), so d(S) ⊆ Ac1 ∩ d(Z) = A2. Clearly b ∈ d(φ(b)) for all
b ∈ A2, so A2 ⊆ d(S). Then A2 = d(S).

Set W = Y ∪ S. We have now shown that A2 6= ∅ and A1 ∩A2 = ∅. Since d(Y) = A1 and
d(W) = A2, it follows that W ∩ Y = ∅, so we have

(1) Wb = Yb = φ(b) for all b ∈ A1.
(2) Wb = Sb = φ(b) for all b ∈ A2.

6 MAX CYTRYNBAUM

Then apparently W ∈ G(φ, a1) as defined above. However, by construction |d(W)| >
|d(Y)|, which contradicts our original choice of Y . This finishes the proof. �

2.2.1. Discussion. Combining these lemmas, we see that searching for core allocations in a
very general model of multilateral matching with contracts is equivalent to searching for the
fixed points of T . Our algorithm depends heavily on this result, which shows, critically, that
the fixed points E(T) are only as dense in (2X)A as the core outcomes.

Our maximal domain results will show that this is not the case for the natural extension
of this method to weak core outcomes WC(X,U). For weak core outcomes, where the lattice
algorithm fails, T also fixes at a large number of extraneous, uncoordinated preallocations
(see Lemma 4.1).

2.3. The Lattice of Fixed Preallocations. In this section, we generalize constructions
from Echenique and Yenmez (2013) showing the the fixed points of the squared operator T 2

form a lattice. First, we define a natural partial order on the set of preallocations (2X)A.
Say that φ � φ′ if and only if φ(a) �a φ′(a) for all a ∈ A, where at least one of these

inequalities holds strictly. Thus, we write φ � φ′ if and only if φ � φ′ or φ = φ′. This is a
product order on a product space, which makes (2X)A into a complete lattice. Next, we give
a sequence of results concerning the operator T and its fixed points. These results are an
almost direct extension of the results in Lemma 4 through Proposition 8 of Echenique and
Yenmez (2013). For the purposes of illustration, we include the proof the first result for the
more general framework of preallocations considered in this paper. The rest of the lemmas
follow from straightforward extensions of the work in Echenique and Yenmez (2013).

Lemma 2.5. T is antitone

Proof. Let φ � φ′ be preallocations. Fix a ∈ A, and let Z ∈ V (φ′, a). Then there is an
allocation Y ⊆ X with Ya = Z such that Yb �b φ′(b) for b ∈ d(Y) \ {a}. Then Yb �b φ′(b) �b
φb also for all such agents, so we also have Z ∈ V (φ, a). Then V (φ, a) ⊇ V (φ′, a), so that
Tφ(a) � Tφ′(a). The agent a was arbitrary, so Tφ � Tφ′ under our partial order. �

The following lemmas follow exactly as in Echenique and Yenmez (2013), using the anti-
tonicity of T .

Corollary 2.6. T 2 is isotone, and E(T 2) is a non-empty complete lattice.

Lemma 2.7. No two preallocations φ and φ′ can be compared under the partial order on
(2X)A.

Lemma 2.8. There exist preallocations φ and φ such that for all φ ∈ E(T), we have φ �
φ � φ. Moreover, if φ = φ or φ = φ, then E(T) = {φ}.

3. Sharing Lattice Information to Find All Core Allocations

3.1. Introduction. In this section, we give an algorithm that finds all core allocations in
the model of multilateral matching with contracts considered above. Our algorithm builds
upon the original approach in Echenique and Yenmez (2013). In particular, we show how to
fully exploit the problem’s complete lattice structure to more efficiently find the full set of
core matchings.

The algorithm proceeds by successively initializing modified versions of the original match-
ing problem, in which each agent has a truncated preference list. Our main contribution

USING LATTICE GEOMETRY TO FIND ALL STABLE ALLOCATIONS 7

is to realize that many of the subproblems created while searching the lattice E(T 2) share
geometric information with other subproblems. We show how fast digraph algorithms may
be used to combine this shared information and more quickly identify the full set of core
matchings.

3.2. Intuition and Notation.

3.2.1. Algorithm Intuition. Let φ∗ denote the largest preallocation under the partial order
�. That is, φ∗(a) = argmaxUa(φ(a)) for each a ∈ A. Suppose that the total number of
agents |A| = m > 0. We will use 〈φ〉 or 〈φ(1) . . . φ(m)〉 to denote a version of the original
problem in which each agent a’s preference list is truncated to allocations in 2Xa ranked
weakly below φ(a) by agent a. We will often identify a problem 〈φ〉 with its maximal point
φ. Let E(φ) ≡ {φ′ ∈ E(T) : φ′ � φ} denote the fixed points of T below φ.

By Tarski’s Theorem4, the sequence (T 2)kφ∗ converges to a preallocation φ, fixed by T 2,
which is the maximal point of the lattice E(T 2). If Tφ = φ, then by Lemma 2.8 showing
that no elements of E(T 2) are ranked by “�”, E(T) = {φ}. So suppose that Tφ 6= φ.
Clearly E(T) ⊆ E(T 2) for any operator, and, by iteratively applying T 2, we have learned
that E(T) ⊆ E(T 2) ⊆ {φ′ : φ′ � φ} ≡ {φ′ � φ}. We will sometimes denote relations of this
type by E(T) � φ.

Since Tφ 6= φ, apparently E(T) ⊆
⋃m
i=1{φ′ � φ − ei}, where ei denotes the standard

unit vector5 in Rm. Consider a subproblem of the form 〈φ− ei〉, and let Ti be the operator
corresponding to this subproblem, where agents’ preferences are truncated above φ−ei. The
key insight of Echenique (2007), which generalizes to the current model, is that E(T)∩{φ′ ≤
φ − ei} ⊆ E(Ti). That is, the fixed points of T contained in the cone {φ′ � φ − ei} are
also fixed points of the new problem 〈φ − ei〉 with operator Ti. Then apparently we have
E(T)∩ {φ′ ≤ φ− ei} ⊆ E(Ti) ⊆ E(T 2

i), so information about the lattice of fixed points of T 2
i

can be used to bound E(T). The general result in our setting is as follows

Lemma 3.1. Suppose φ � φ̂, and let T̂ denote the core operator for the problem 〈φ̂〉. If

φ ∈ E(T), then φ ∈ E(T̂). In particular, E(T) ∩ {φ ≤ φ̂} ⊆ E(T̂ 2).

Proof. Let V̂ (φ, a) be the defining set for T̂ in the subproblem. Then for any a ∈ A and

φ ∈ (2X)A we have V̂ (φ, a) = {Z ∈ 2Xa : ∃Y ∈ 2X s.t. Ya = Z, φ̂(b) �b Yb �b φ(b) ∀b ∈
d(Y) \ {a}} then clearly V̂ (φ, a) ⊆ V (φ, a). We can compute T̂ φ(a) = max V̂ (φ, a) ≤
maxV (φ, a) = Tφ(a) for any preallocation φ.

Now, suppose that φ ∈ E(T) ∩ {φ′ � φ̂}. Then we have have φ(a) = Tφ(a) �a T̂ φ(a)
for all a ∈ A. By Lemma 2.4 above, E(T) ⊆ CP, so φ = φY for some allocation Y ∈ 2X .

In particular, Ya = φ(a) �a φ̂(a), so φ(a) ∈ V̂ (φ, a). Then by the definition of T̂ , we get

T̂ φ(a) �a φ(a).

Combining this with the statement above, we have φ(a) = T̂ φ(a), so φ ∈ E(T̂). �

4This is easy to see. Note that T 2φ∗ � φ∗ by maximality, so (T 2)kφ∗ � (T 2)k+1φ∗ for any k ≥ 1 by
isotonicity. Then this sequence is monotonically decreasing and bounded above min E(T 2) on a finite lattice,
so it converges in finitely many iterations, say at k = `. Let φ′ ∈ E(T 2) another fixed point, then φ∗ � φ′,
so φ = (T 2)`φ∗ � (T 2)`φ′ = φ′, so φ = max(E(T 2)).

5identifying (2X)A with a grid in Rm as above.

8 MAX CYTRYNBAUM

Returning to the discussion above, we showed that E(T) ⊆
⋃m
i=1{φ′ � φ− ei}, a union of

cones in the lattice of preallocations. That is, E(T) ⊆
⋃m
i=1 E(φ − ei). Fix i and consider

E(φ−ei), the fixed points of T below φ−ei. For convenience, denote Si ≡ T 2
i and φi ≡ φ−ei.

Starting with φi, the unanimously most preferred preallocation in the subproblem 〈φi〉,
Lemma 2.3 and the Tarski argument used above show that each iteration of Si gives a “cone
guarantee” on the fixed points E(T) of the form E(φi) � Ski φi.

Pursuing this strategy for i = 1 . . .m, we can bound the complete set of fixed points E(T)
in a union of subproblem cones. We continue this strategy recursively by generating m new
subproblems whenever a monotonic sequence of the form Ski φi stops at a fixed point of Ski .
In this way, we will eventually find the full set of core outcomes, directly extending the
Echenique and Yenmez (2013) algorithm to the present setting.

However, depending on the structure of the lattice E(T 2), the strategy described above
can actually be quite similar to greedy search. In particular, the number of subproblems
generated at the kth recursive level scales exponentially in k as |A|k.As we will show, many
of the subproblems generated by this strategy are either redundant or do not need to be
solved completely. We will show that we can capitalize on the structure of the preallocation
lattice by allowing subproblems to share geometric information with each other. With this
modification, evaluation of the full Tarski sequence Ski φi is often unnecessary. In fact, it is
often the case that subproblems can be stopped or removed entirely after a few iterations.
We will illustrate this idea with a couple of simple examples.

3.2.2. Graph-Theoretic Notation. First, we briefly recall some graph-theoretic notation, which
will be useful in the coming sections. A graph is a pair (V,E), where V is a collection of
vertices and E ⊆ V × V is a collection of edges. In a directed graph (digraph), the order of
vertices in an edge matters. A directed path is a sequence e1 . . . en of edges, where ek2 = ek+1

1

for k ≤ n − 1. A subset W ⊆ V is strongly connected if for any vi, vj ∈ W , there exist
directed paths vi → vj and vj → vi using only vertices in W . Strong connectedness is an
equivalence relation on V , and the (disjoint) maximal strongly connected subsets of V are
called the strong components of G, which we denote by G. Weak connectedness is defined
similarly for an undirected graph, where an (undirected) path is defined as above, ignoring
the order on vertices in an edge. The reachable set from a vertex v is the set of all v′ ∈ V
such that there exists a directed path v → v′.

By a rooted tree, we mean a graph that is connected with no cycles (paths starting and
ending at the same vertex) and has one vertex designated as the root. Edges on a rooted tree
are naturally oriented away from the root. A collection of such rooted trees is called a forest
and, for such a collection, for a vertex w we let r(w) denote the root of the tree containing
w, and we let c(w) denote the children of w, the vertices connected by an edge to w on a
path away from the root, and p(w) denote the parent vertex of w, defined similarly6.

3.2.3. Example 1 - Colliding Subproblem Cones. In this section, we give a simple example of
how subproblems can share information. For easy of visualization, consider the case |A| = 2.
As noted previously, we may identify (2X)A with a grid, in this case in R2. As above, we
iterate T 2 to find φ = max E(T 2), which we identify, for instance, with the integer lattice
point (10, 10) = φ. Using the notation above, there are isotone operators S1 = T 2

1 and
S2 = T 2

2 corresponding to the subproblems 〈φ− e1〉 and 〈φ− e2〉, respectively.

6See, for instance, Gross and Yellen (2005) for a more detailed introduction to graph-theoretic terminology.

USING LATTICE GEOMETRY TO FIND ALL STABLE ALLOCATIONS 9

(10,10)

(7,6)

φ1

φ2
S2

1φ1

S2
2φ2

Figure 1. Combining Information from Subproblem Cones Guarantees

Beginning with subproblem 1, suppose that S1(9, 10) = (8, 10), S2
1(9, 10) = (7, 9), and

S3
1(9, 10) = (7, 9). By our arguments above, we now have a cone guarantee on the fixed

points in the first subproblem; specifically, E(T) ∩ {(x, y) � (9, 10)} � (7, 9) � (10, 9) = φ2.
Therefore, E(φ1) = E(T) ∩ {(x, y) � (9, 10)} ⊆ E(T) ∩ {(x, y) � (10, 9)} = E(φ2). That is,
the solutions to subproblem 1, the fixed points of T in {(x, y) � (9, 10)}, are contained in
the set of solutions to subproblem 2.

Now suppose that we stop working on subproblem 1 and begin iterating with S2. Suppose
that S2(10, 9) = (10, 6) = S2

2(10, 9), so the sequence stops. Then we have learned that
E(φ1) ⊆ E(φ2) � (10, 6). However, by iterating S1, we also learned that E(φ1) � (7, 9).
Then apparently E(φ1) is contained in the cone intersection {(x, y) � (7, 9)} ∩ {(x, y) �
(10, 6)} = {(x, y) � (7, 6)}. That is, by combining the information from subproblem 2 with
subproblem 1, we have learned that E(φ1) � (7, 6).

Note that, even if we learn E(φ1) ⊆ E(φ2), we may still wish to retain the information
associated with subproblem 1. If, for instance, the outcome for subbproblem 2 was instead
that S2(10, 9) = (9, 6) = S2

2(10, 9), then we would also know that E(φ2) ⊆ E(φ1), so that
E(φ2) � min((9, 6), (7, 9)) = (7, 6) and, in fact, E(φ1) = E(φ2). The idea of equivalent
subproblems is explored further in the next example.

3.2.4. Example 2 - Chutes and Ladders. In this section, we give intuition for how to efficiently
combine information and track the relations between different subproblem cones. Consider
the case |A| = 3, where we identify (10, 10, 10) = φ = max E(T). After initializing subprob-
lems at (9, 10, 10), (10, 9, 10) and (10, 10, 9), suppose that we find S1(9, 10, 10) = (9, 8, 10),
S2(10, 9, 10) = (10, 9, 7), and S3(10, 10, 9) = (9, 10, 9). As argued above, this shows that
E(φ1) � (9, 8, 10) � (10, 9, 10) = φ2, so that E(φ1) ⊆ E(φ2). Similarly, our calculations
with S2 and S3 show that E(φ2) ⊆ E(φ3) and E(φ3) ⊆ E(φ1). Combining all these relations,
apparently E(φ1) = E(φ2) = E(φ3) � (9, 8, 7), so the subproblems are equivalent. Thus, we
can collapse all of these subproblems to a new subproblem started at φ′ = (9, 8, 7) without
losing any fixed points of the original operator T .

10 MAX CYTRYNBAUM

1 2

3 4

Figure 2. A Collision Digraph

w1 w2 w3

w(φ′)

Figure 3. A Problem Forest

We have seen that collisions between subproblem cones give information relations of the
form E(φi) ⊆ E(φj) regarding the fixed points of T . Consider a digraph that tracks these
collisions. Then this digraph has the form shown below, where subproblems correspond to
vertices, and there is an edge vi → vj only if problem i “collides” with problem j (made
precise below). Since, in particular, the digraph has a directed edge (vi, vj) only if E(φi) ⊆
E(φj), the equivalence of subproblems is reflected in the connectedness of the graph.

Suppose now that φ is found at some intermediate step in the algorithm, and consider a
distinct subproblem near φ started at φ4 = (11, 11, 11) with associated isotone operator S.
We begin iterating and find that S(φ4) = (10, 10, 8), which shows E(φ4) ⊆ E(φ3) Then a
single iteration of S has shown us that E(φ4) ⊆ E(φ3) � (9, 8, 7) = φ′, using the relations
above. Of course, the same conclusion would hold if we found that S(φ4) � φi for any i.

We know that E(φ1) = E(φ2) = E(φ3) � φ′. We can track these subproblem relations
efficiently with a collection of rooted trees as follows: let vertices w1, w2, w3 be children
of w(φ′), a vertex representing φ′ = (9, 8, 7). We denote this relationship by c(w(φ′)) =
{w1, w2, w3}. Using the notation in the previous section, we have the root-vertex relation
r(wi) = w(φ′) for i = 1, 2, 3. Note that, by our work above, we have E(φ′) = E(φi) for all
wi ∈ c(w(φ′)). Also, E(φi) = E(φj) for all i, j children of the same node.

Suppose we maintain a collection of trees for which parent nodes and child nodes are all
related in this way. Consider a solved subproblem 〈φi〉 with r(wi) = wk. Then if at some
step of the algorithm we obtain a guarantee that E(φj) ⊆ E(φi) for an active subproblem
〈φj〉, the relations built into our problem tree imply that, in fact, E(φj) ⊆ E(φk), potentially
skipping a large region of lattice space that we would otherwise have to search for elements
of E(T). This dynamic gives our algorithm a “Chutes and Ladders” effect. In particular,
we make efficient use of both the geometric information shared between active problems and
the information gained during previous steps of the algorithm.

USING LATTICE GEOMETRY TO FIND ALL STABLE ALLOCATIONS 11

3.3. Informal Algorithm Description. In this section, we introduce notation and give a
brief, intuitive explanation of the full algorithm, building on the examples above. Pseudocode
and correctness proofs for the full algorithm follow. First, we discuss indexing.

Labels for Preallocations, Vertices, and Operators : During the algorithm, we build various
graphs. For any such graph, each vertex will correspond to a problem 〈φ〉, where φ ∈ (2X)A.
We thus require a way to denote correspondences between vertices and problems. We thus
fix an index set I, which we use to label problems and vertices. We will denote corresponding
vertices and problems with the same subindex, for instance, φi ∼ vi ∼ wi, where i ∈ I. We
allow the possibility that φi = φj as preallocations for i 6= j. Thus, technically, a problem
φi is a preallocation index pair (φ, i) ∈ (2X)A × I, and we enforce that the index of every
problem initialized during the algorithm is chosen to be unique. When clear, we let v(φ)
and w(φ) denote the vertices corresponding to a certain problem 〈φ〉, where w(φ) = wk for
some k ∈ I. Thus, for instance, v(φi) = vi. For clarity, vertices of a digraph G are always
denoted by v, while vertices of a forest F are always denoted by w. Similarly, the operator
for a subproblem φi will be denoted by Ti. The algorithm consists of two alternating stages.

Stage 1 - Information Acquisiton: In the first stage, we consider a set of problems Q0. As
above, each problem 〈φi〉 is associated with an isotone operator Si = T 2

i . In this stage, we
iteratively apply Si to each φi ∈ Q0, creating new problems when necessary, as discussed
below. Let Q be a set of problems Q0 ⊆ Q, which we think of as the problems from previous
steps of the algorithm that still contain useful information.

Stopping Conditions : During the algorithm, for a problem 〈φi〉, we compute the Tarski
sequence (T 2

i)kφi, k ≥ 0. Define the following stopping conditions for an element (T 2
i)kφi ≡ φ′

of this sequence.

(1) φ′ � φ

(2) T 2
i φ
′ = φ′

(3) There exists φj ∈ Q with φ′ � φj and φi 6� φj

Condition (1) corresponds to the problem exiting the lattice E(T 2). For Condition (2),
the Tarski sequence fixes. If Tφ′ = φ′, by Lemma 2.7, {φ′′ ≺ φ′} ∩ E(T) = ∅. Otherwise, we
need to initialize new problems below φ′. For Condition (3), the problem 〈φi〉 “collides” with
some problem in Q, so we stop the sequence and wait for the information sharing subroutine,
discussed below.

Stage 2 - Information Combination: In this stage, we use efficient digraph algorithms to
combine information from related problems. First, we define a graph structure that relates
different problems solved during the algorithm

Definition 3.2. A collection of rooted trees F is said to be problem forest for a set of
problems Q when the following hold:

(1) If φk ∈ Q, then wk ∈ F .
(2) If there exists a wk ∈ F such that wi, wj ∈ c(wk), then E(φi) = E(φj).
(3) If wi = p(wj), then φi � φj and E(φj) = E(φi)

Thus, siblings in a problem forest share fixed points of T , and the fixed points of a child
are the same as the fixed points of its parent. For now, we assume the existence of such
a forest for the problems considered below (construction in section 3.4). Next, we define a
graph structure that allows us to combine the information from intersecting problem cones.

12 MAX CYTRYNBAUM

Definition 3.3. Let F be a collection of rooted trees. A digraph G = (V,E) is said to be
a collision digraph if (vi, vk) ∈ E if and only if there exist φi ∈ Q0 and φj ∈ Q such that (i)
(T 2

i)` � φj for some ` ≥ 1, (ii) φi 6� φj, and (iii) r(wj) = wk.

That is, using the correspondence between vertices and problems, (vi, vk) is added to G
only if during Stage 1 problem φi “collided” with some vertex wj in the tree which has wk
as its root.

In stage 2 of the algorithm, the “information combination” stage, we start with a collection
of problems Q0 and a list of problem collisions I(i) for each φi ∈ Q0. We form the collision
digraph G and compute its strong components G = {Sj}j∈J , where J is an index set. For
j ∈ J , pick v ∈ Sj and compute its reachable set, by which we define Hj, the reachable
set of component Sj. Since strong components are strongly connected, this definition is
independent of the choice of v.

In Proposition 3.9, we show that our construction of the collision digraph and inductive
assumption on the forest F guarantees that E(φi) ⊆ E(φk) whenever (vi, vk) ∈ E. In
particular, we can show that E(φi) ⊆ E(φk) whenever vi ∈ Sj and vk ∈ Hj.

Let Qtemp = ∅ and, for each strong component Sj ∈ G, add φ = min
vk∈Hj

φk to Qtemp. By the

guarantees above, we can combine all problems represented in strong component Sj of the
digraph into a new active set of problems by letting Q0 ← Qtemp without losing any points
of E(T). Note that, by changing Q0 in this way, we may have actually caused new cone
collisions. We can use these collisions to weakly improve the progress of the algorithm, as
above. Thus, we run the information combination subroutine in stage 2 iteratively until there
are no more cone collisions. This process terminates, as discussed in Lemma 3.11. After
termination, we return to stage 1 with a new collection of active problems Q0 ← Qtemp.

In general, we would like to spend as much time as possible in the information combination
stage, since this stage improves the progress of the search for E(T) by using fast7 digraph
algorithms, as opposed to the often costly process of computing the operator T , which is
equivalent to checking whether a given allocation is core.

3.4. Full Algorithm. In this section, we state the full algorithm to find all core allocations
C(X,U). Throughout what follows, we maintain global variables F , a rooted forest, and Q,
a collection of active and previously solved problems.

Initialization To initialize the algorithm, set EC = ∅ and create an empty forest F = (∅, ∅).
Apply T 2 iteratively to each of φ∗ and φ∗, the maximal and minimal allocations in (2X)A,
to find φ = max E(T 2) and φ = min E(T 2), respectively. If Tφ = φ set EC = {φ} and
terminate. Similarly, if Tφ = φ, then set EC = {φ} and terminate. Otherwise, for i = 1 . . .m

add φ−ei to Q and Q0, and add w(φ−ei) to F as an isolated root. Then, run FindStrictCore.
Subroutine details are given below.

Subroutine 3.4 (InformationAcquire). Initialize QA = Q0, and set Etemp = QI = I = ∅.
If φi ∈ Q0 has either (i) φi � φ or (ii) there exists φj ∈ Q0 s.t. φi ≺ φj, then remove φi

from QA, Q0, and Q.
While QA 6= ∅, do the following:
For each φi ∈ QA, compute the Tarski sequence (T 2

i)kφi until a stopping condition (as
above) is triggered for some k = `. Set φ′ = (T 2

i)`φi, and do the following:

(a) Add w(φ′) to F with c(w(φ′)) = w(φi)

7Tarjan’s algorithm for finding strong components of a graph G = (V,E) runs in O(|V |+|E|), for instance.

USING LATTICE GEOMETRY TO FIND ALL STABLE ALLOCATIONS 13

Algorithm 1 FindStrictCore

Input: Q0

1: Initialize as above
2: Set EC = ∅
3: while Q0 6= ∅ do
4: (Q0, I, Etemp)← InformationAcquire(Q0)
5: EC = EC ∪ Etemp
6: while I 6= ∅ do
7: (Q0, I)← InformationCombine(Q0, I)
8: end while
9: end while

10: return EC

(b) Remove φi from QA.

For stopping conditions8 (2) and (3), do the following:

(2) (i) If Tφ′ = φ′ then add φ′ to Etemp. Else, (ii) for 1 ≤ i ≤ m, add φ′ − ei to Q0, QA,
and Q if φ′ − ei is not already in Q. Finally, (iii) for each problem φ′′ just added to
Q0, add w(φ′′) to F as an isolated root.

(3) By assumption, condition (3) was triggered by a “collision” with at least one problem
φj ∈ Q. For all such j, (a) add φi to QI and (b) add j to the collision index set I(i).

Return (QI , I, Etemp).

Subroutine 3.5 (InformationCombine). To initialize, form an empty digraph G = (V,E)
with V = E = ∅, set Qtemp = ∅, and add i to I(i) for each φi ∈ Q0. Next, build the collision
digraph as follows:

For each φi ∈ Q0, (i) add vi to V , and for all collision indices j ∈ I(i), (ii) compute
wk = r(wj) and (iii) add vk to V and (vi, vk) to E. Next, do the following computations with
G:

(1) Compute the strong components G of G.
(2) Remove {vk} ∈ G if φk 6∈ Q0, leaving trimmed components {Sj}j∈J
(3) Compute the reachable set Hj for each Sj with j ∈ J .

For each j ∈ J , combine information to form new problems:

(a) Add φ′ = min
vk∈Hj

φk to Qtemp.

(b) Add the vertex w(φ′) to F with c(w(φ′)) = {r(wk) : vk ∈ Sj}.
Reset I(i) = ∅ for i ∈ I. To check for new collisions, do the following:
For each φ′ ∈ Qtemp, if ∃φk ∈ Q and wj ∈ c(wi) such that φ′ � φk and φj 6� φk, then add

collision index k to I(i).
Set Q0 ← Qtemp and Q← Q ∪Qtemp.
Return (Q0, I).

3.5. Algorithm Analysis. In this section, we show termination and correctness of Find-
StrictCore. Along the way, we prove structure theorems for the collision digraph and problem
forest defined above.

8If both stopping conditions (1) and (3) both occur, use condition (1): the problem has left the lattice
E(T 2), so there is no reason to seek further information.

14 MAX CYTRYNBAUM

Our proofs of correctness and termination will make use of the following key lemma, which
shows that we can track the relations between subsets of E(T) with the graph F constructed
during the algorithm.

Lemma 3.6. At any point during the execution of FindStrictCore

(1) F is a problem forest
(2) If k ∈ I(i), where r(wi) = wj, then E(φj) ⊆ E(φk)

Before proving Lemma 3.6, we give definitions, some needed auxiliary lemmas, and a
structure result for the collision digraph G.

For a forest (a collection of rooted trees) define the root set R(F) = {r(w) : w ∈ F}. That
is, R(F) consists of all roots of trees in the forest. For clarity, if t is a rooted tree in F , we
will let r(t) denote the (unique) root node of this tree. The depth of a vertex w in a forest
F is defined as its depth in the unique rooted tree containing it, denoted by D(w,F). The
reachable set of a vertex w in a forest F is denoted similarly by H(w,F).

Next, we develop some graph-theoretic results for problem forests.

Lemma 3.7. Let F be a rooted forest. Suppose that F ′ is obtained from F in one of the
following ways

(1) Adding an isolated vertex to F
(2) Adding a vertex w and directed edges (w,w′) with w′ ∈ R(F).

Then the following are true

(i) F ′ is also a rooted forest.
(ii) H(w,F) = H(w,F ′), the reachable set of a vertex w ∈ F is unchanged

(iii) D(w,F ′) ≥ D(w,F), the depth of a vertex w ∈ F weakly increases.

Proof. Note that a graph G = (V,E) is a tree9 if and only if G is connected and |E| = |V |−1.
Consider the forest F and let {ti}i∈I be its constituent rooted trees. That is, {ti}i∈I is the
collection of maximal connected components of F . For case (1), no edges were added, so
the new collection of maximal connected components is now {ti}i∈I ∪ {w}. Each ti is still a
rooted tree by assumption, and {w} is also trivially a rooted tree with root w.

For case (2) above, let w be the added vertex and J the subset of tree indices such
that, for i ∈ J , edge (w, r(ti)) is added to F . Let i ∈ J . Since each such ti is connected
and connectedness is transitive, then t′ = ∪i∈Jti is a (weak) connected component of F ′.
Then apparently the connected components of F ′ are {ti}i 6∈J and {t′} . It suffices to show
that t′ is a rooted tree. Let V (t) and E(t) denote the vertices and edges, respectively, of
a tree t. By construction, |V (t′)| = 1 +

∑
i∈J |V (ti)| and |E(t′)| = |J | +

∑
i∈J |E(ti)| =

|J |+
∑

i∈J(|V (ti)|− 1) =
∑

i∈J |V (ti)|. Then |V (t′)| = |E(t′)|+ 1, so, by the criterion above,
t′ is a tree.

We show that t′ is rooted with root w. Consider w′ ∈ V (t′) \ {w}. Then w′ ∈ V (ti) for
some i ∈ J . There exists a directed path w → R(ti), and a directed path R(ti)→ w′ because
ti is a rooted tree. Then there is a directed path w → w′, which is unique because t′ has no
cycles. Then t′ is a tree rooted at w, so F ′ is a rooted forest.

Next, we prove the statement about reachable sets. Case (1) above is clear, since no edges
are added. For case (2), let w ∈ t for some tree in F . If there is a new path from w → w′

such that w′ 6∈ H(w,F), it uses one of the added edges (w1, w2). Then, apparently, there

9See Gross and Yellen (2005) for a proof.

USING LATTICE GEOMETRY TO FIND ALL STABLE ALLOCATIONS 15

exists a path w → w1 in F ′. But, as shown above, w1 is a root in the new forest F ′, so
there exists no directed edge of the form (x,w1). This is a contradiction, so it must be that
H(w,F) = H(w,F ′).

The final statement concerning vertex depth is trivial.
�

Next, we give a simple observation, showing how problem forests can be used to track
fixed point relations.

Lemma 3.8. Let F be a problem forest for Q, with φi, φj ∈ Q. Let t be a rooted tree in F ,
and suppose that r(wi) = wj. Then E(φi) = E(φj).

Proof. By assumption, t is a rooted tree, so there is a unique directed path of the form
wj = w0 → w1 → · · · → wn = wi from the root to wi. Then, for each vertex in the path is
related by p(wk) = wk−1 for 1 ≤ k ≤ n. Then, since F is a problem forest by assumption,
we get a chain of inclusions E(φk−1) = E(φk) for 1 ≤ k ≤ n, showing that, as claimed,
E(φi) = E(φj). �

The following lemma shows that, conditional on the problem forest structure of F , the
collision digraph can be used to combine the information contained in distinct problem cones.

Proposition 3.9. Suppose that the following conditions hold when InformationCombine is
called:

(i) F is a problem forest
(ii) For any φi ∈ Q0 with r(wi) = wj, if k ∈ I(i) then E(φj) ⊆ E(φk)

Let G = (V,E) be the collision digraph and S one of its strong components, then

(1) If (vi, vk) ∈ E then E(φi) ⊆ E(φk).
(2) If vi, vj ∈ S then E(φi) = E(φj).
(3) If vj ∈ S and vk ∈ H, the reachable set of S, then E(φi) � φk.

In particular, item (2) shows that the strong components of G identify groups of equivalent
problems, which can then be consolidated. Statement (3) shows that fast digraph algorithms
for computing reachable sets can be used to combine the information learned in different
subproblems.

Proof. First, we characterize the edges of G = (V,E). Consider φi ∈ Q0 at initialization of
the subroutine and j ∈ I(i) with wk = r(wj) and w` = r(wi). Since F is a problem tree,
by Lemma 3.8 above E(φi) = E(φ`) and E(φj) = E(φk). By our assumption about collision
indices, we have E(φ`) ⊆ E(φj). Putting this together, we have E(φi) ⊆ E(φk) for every
(vi, vk) ∈ E. This shows that (1) above holds.

Now consider a strong component S (after removing singletons {vi} for φi 6∈ Q0). For
vi, vk ∈ S, there are directed paths vi → vk and vk → vi. Then, by the correspondence
between directed edges and fixed point inclusion shown above, we have E(φi) ⊆ E(φk) and
E(φk) ⊆ E(φi), so E(φi) = E(φk) for all vi, vk ∈ S, completing the proof of (2) above.

Finally, if φi ∈ S and φk ∈ H, then there exists a path vi → vk by definition, so by (3)
above there is a chain of inclusions E(φi) ⊆ . . . ⊆ E(φk). In particular, E(φi) � φk. This
completes the proof of the lemma. �

Before proving our key result, we show an auxiliary lemma about the relationship between
F and the problem sets returned from each subroutine

16 MAX CYTRYNBAUM

Lemma 3.10. Any distinct problem φ ∈ (2X)A, is processed (the Tarski sequence for 〈φ〉 is
evaluated) at most once in Subroutine 3.4. Moreover, the following statements are true:

(1) If F is a problem forest when Subroutine 3.4 is initialized, then the set Q0 returned
from the subroutine satisfies φi 6= φj ∈ Q0 =⇒ r(wi) 6= r(wj).

(2) If Q0 is returned from Subroutine 3.5, then w(φ) ∈ R(F) for each φ ∈ Q0.

Proof. The first statement is a simple observation. If φi is processed more than once, then φi
is added to QA more than once during the algorithm . Since QA ⊆ Q0, and elements are only
added (never removed) to Q0 after redundancy checks (i) and (ii), then φi ∈ Q0 when it is
added to QA the second time. But we check for this when we process stopping condition (2)
at (ii), so this is impossible. Then any distinct preallocation is processed at most once.

For the other lemma statements, we work by induction on `, the total number of evalua-
tions of Subroutine 3.4 and 3.5. For ` = 0 the statements are trivially true. Then assume
that (1) and (2) above hold up to ` = n ≥ 0. There are several cases. Throughout, let
(Q′0, F

′) and (Q′′0, F
′′) denote the states of (Q0, F) at initialization and return, respectively,

of the subroutine that finishes at ` = n+ 1.
Case 1 : InformationAcquire (Subroutine 3.4) returns at ` = n + 1. Note that Subrou-

tine 3.4 is called either directly after initialization or after evaluation of Subroutine 3.5. If
Subroutine 3.4 directly follows initialization of FindStrictCore, clearly w(φ) ∈ R(F ′) for
φ ∈ Q′0 by construction. Otherwise, this statement holds by the inductive hypothesis and
(2) above. Note that each φ added to Q0 during this subroutine is initialized as an isolated
root. Since problem indices are unique, this shows that, at any time before φ is processed
(the Tarski sequence for φ ∈ QA is evaluated), w(φ) ∈ R(F). In particular, D(wi, F) = 0
when φi is added to the Q0 during the subroutine.

Note first that F ′′ is obtained from F ′ by adding vertices and edges satisfying the conditions
of Lemma 3.7. Then, by the lemma, F ′′ is also a rooted forest. Suppose that for φi 6= φj ∈ Q′′0,
r(wi) = r(wj) = w in F ′′. Then there are directed paths w → wi and w → wj. The directed
path w → wi can be represented as a sequence of vertices w = w1, w2, . . . , wk = wi and
similarly for wj. Clearly, there is at least one vertex in the path w → wj not in w → wi. Let
k′ denote the minimal index of such a vertex in either path. By minimality, the paths are
identical up to wk′−1.

Subcase 1: One of the paths, without loss w → wi, ends at wk′−1. Then there is a directed
path wi → wj. But D(wj, F) = 0 when φj is added to Q0 as above, so all edges on this
path must have been added during the subroutine, after φi was processed, since in-edges are
only added to problems already in Q0. Immediately after φj is processed, we have so that
p(wj) = r(wj) = w(φ′) ≡ wk for some index k. But indices assigned during the algorithm
are unique, so no problem processed after φi can have index k. Then no edge of the form
(w′, wk) can ever be added, so this is a contradiction.

Subcase 2: Both paths w → wi and w → wj continue beyond wk′−1. Then w′ ≡ wk′−1 has
out-degree ≥ 2. Only vertices of out-degree 1 are ever added to F during the subroutine, so
we must have w′ ∈ F ′, the problem forest at the beginning of the subroutine. By Lemma 3.7
the reachable sets for w′ have H(w′, F ′) = H(w′, F ′′). Then, in particular, wi ∈ F ′ and
D(wi, F

′) ≥ 1 By Lemma 3.7 again, D(wi, F) ≥ D(wi, F
′) ≥ 1 for any state of the forest F

during the subroutine. Then φi is never in Q0 during the algorithm, since we showed that,
for any φi ∈ Q0, wi ∈ R(F) at some point during the algorithm. This completes the proof
for this case.

USING LATTICE GEOMETRY TO FIND ALL STABLE ALLOCATIONS 17

Case 2 : Subroutine 3.5 returns at ` = n + 1 after Subroutine 3.4 returns at ` = n.
We will show that w(φ) ∈ R(F ′′) for all φ in the set of returned problems Qtemp. Let
G = (V,E) be the collision digraph formed during this subroutine. By definition, the
strong components {Sj}j∈J of G retained after removing irrelevant singletons at step (2) are
disjoint. Then if Sj 6= Sj′ with vk ∈ Sj and vk′ ∈ Sj′ we must have r(wk) 6= r(wk′) by the
inductive hypothesis and (1) above, so {r(wk) : vk ∈ Sj} ∩ {r(wk) : vk ∈ S′} = ∅. Define
R(j, F) = {r(wk) : vk ∈ Sj}, roots of F generated by vertices in Si. At any point during the
algorithm, call an index j processed if φj ∈ Qtemp.

As we add problems φ to Qtemp and vertices w(φ) to F , the problem forest F changes, so
root sets may change. However, working by induction the number of processed problems m,
we can show that R(F, j) = R(F ′, j) for any unprocessed index j and forest state F during
this subroutine. The base case m = 0 is trivial. Assume this is true up to m = k. Suppose
we process index j at m = k+1 and let Ju be the set of unprocessed indices, where Fj is the
state of the forest before processing index j. For i ∈ Ju, R(Fj, i) = R(F ′, i) for i ∈ Ju by
induction. In particular, R(Fj, i) are pairwise disjoint for i ∈ Ju. Then adding a new vertex
w(φj) as a root with c(w(φj)) = R(F ′, j) cannot change any of the other component root
sets R(F ′, `) for ` ∈ Ju \ {j}. If k is processed next after j, this shows R(Fk, `) = R(F ′, `)
for ` ∈ Ju \ {j}, which completes the induction.

In particular, for any φ ∈ Qtemp, w(φ) 6∈ F ′ at the beginning of the subroutine, so w(φ) 6∈
R(Fj, j) = R(F ′, j) for any j. Then no edge of the form (w′, w(φ)) is ever added during this
procedure. This shows that each added vertex w(φ) is still a root in F ′′, when the subroutine
returns, so we have shown (2) above for this case.

Case 3 : Subroutine 3.5 returns at ` = n + 1 after Subroutine 3.5 returns at ` = n. By
the inductive hypothesis for problems returned from Subroutine 3.5, all inputs φ ∈ Q′0 to
Subroutine 3.5 at ` = n + 1 have w(φ) ∈ R(F ′). Then R(F ′, j) = {r(wk) : vk ∈ Sj} =
{wk : vk ∈ Sj}. Then the root sets are disjoint in this case as well, by disjointness of strong
components. The inductive argument from case 2 then establishes (2) above for this case as
well. �

We are now ready for the proof of our key lemma on the structure of the graph F during
the algorithm.

Proof of Lemma 3.6. A straightforward induction on distinct states (F,Q)k of the pair (F,Q)
shows that condition (1) of the definition of a problem forest is always satisfied. Specifically,
any line in which we add φ to Q is paired with a line where w(φ) is added to F .

For the remaining statements, we work by induction on the sequence (F, I)k of distinct
states of the pair (F, I). For k = 0, note that we initialize F as the collection of isolated
roots w(φ − ei) for 1 ≤ i ≤ m, so clearly F is a forest. The other defining conditions are
trivial. Also, we initialize I = ∅, so item 2 above is trivially satisfied. Then assume by
induction that the statements above hold for (F, I)k up to k = n ≥ 0. By an abuse of
notation, we will denote components of (F, I)k as Fk and Ik when the meaning is clear. We
consider separately each case where the pair (F, I) can change.

Case 1 : There is a transition (F, I)n → (F, I)n+1 in Subroutine 3.4 when a stopping
condition is triggered for problem φi at (T 2

i)`φi = φ′, and w(φ′) is added to F at processing
step (a). Let F ′ and Q′0 denote the state of F and Q0 at the beginning of InformationAcquire.
From Lemma 3.10, we know that (i) for any distinct preallocation φ, the problem 〈φ〉 is
processed (the Tarski sequence evaluated) at most once. Moreover, the lemma also shows

18 MAX CYTRYNBAUM

that (ii) any φ ∈ Q′0 has w(φ) ∈ R(F ′) and, from the proof of this lemma, (iii) any φi added
to Q0 during the subroutine has w(φi) ∈ R(F) before φi is processed. We will use these facts
below.

By the Tarski argument from the main text, we have E(Ti) � max E(T 2
i) � (T 2

i)jφi
for any j. In particular, E(Ti) � (T 2

i)`φi = φ′. Combining this with Lemma 3.1 above,
E(φi) = E(T) ∩ {φ′′ � φi} ⊆ E(Ti) � φ′. By monotonicity of the Tarski sequence, we have
φ′ � φi, so E(φ′) ⊆ E(φi). Then E(φi) = E(φ′). Since w(φ′) = p(wi), we have shown that
E(φi) = E(p(φi)) for the only new parent-child relation added to Fn. We add w(φ′) with
c(w(φ′)) = {φi}, so there are no new sibling relations. Then by the inductive hypothesis,
Fn+1 also satisfies condition (2) and (3) defining a a problem forest. By (iii) above, Fn has
w(φi) = r(w(φi)), so the modification Fn → Fn+1 satisfies the conditions of Lemma 3.7.
Then, by the lemma, Fn+1 is also a rooted forest. This completes the proof that Fn+1 is a
problem forest.

By the single-processing condition of Lemma 3.10, we must have I(i) = ∅. Fix any ` ∈ I
and suppose that k ∈ In+1(`) = In(`). By the inductive hypothesis on (F, I)n, if r(w`) = wj
in problem forest Fn, then E(φj) ⊆ E(φk). If we still have r(w`) = wj in the forest Fn+1, we
are done by induction. If not, then it must be that r(w`) = w(φ′). But ` 6= i, so w` is a
descendant of wi in Fn. Case (1) of the proof of Lemma 3.10 shows that such a descendant
relation is impossible. Then condition (2) holds as well, and we are done.

Case 2 : There is a transition (F, I)n → (F, I)n+1 in Subroutine 3.4 during processing
of φi, where stopping condition (3) is triggered and the collection I(i) is modified. Then
Fn = Fn+1, so we need only check item (2) of the inductive hypothesis above. In(i) = ∅
because I = ∅ at initialization of the subroutine and by the single-processing condition, and
each preallocation is processed at most once by Lemma 3.10. For stopping condition (3),
we evaluated the Tarski sequence for 〈φi〉 and found that φ′ � φj ∈ Q for some collection
of indices j, which were added to In(i). By condition (iii) of Lemma 3.10, w(φi) ∈ R(Fn).
We add w(φ′) = p(wi), so r(wi) = w(φ′) in Fn+1. Since φ′ � φj, E(φ′) ⊆ E(φj) for any new
collision index j added during the change (F, I)n → (F, I)n+1.

If ` 6= i, then we have In(`) = In+1(`). In this case, condition (2) holds by the argument
at the end of case (1). Then we have shown that condition (2) holds for the pair (F, I)n+1,
and we are done.

Case 3 : There is a transition (F, I)n → (F, I)n+1 in Subroutine 3.4 during processing of
φi, when stopping condition (2) is triggered and w(φi−ej) is added to Fn as an isolated root
at item (iii). We denote φi − ej = φk. That Fn+1 is still a rooted forest is immediate from
Lemma 3.7, since the new vertex is isolated. No edges are added, so no new parent or child
relations are added. Then, by the inductive hypothesis, Fn+1 remains a problem forest. For
condition (2) above, fix ` and let j ∈ I(`). If ` 6= k, then, because no edge is added to the
graph, r(w`) is unchanged, so the condition holds by the inductive hypothesis. If ` = k, then
I(i) = ∅, so the condition is trivially true. We have shown (1) and (2) hold for (F, I)n+1, so
we are done.

Case 4 Before constructing the collision digraph in Subroutine 3.5, there is a transition
(F, I)n → (F, I)n+1 when we add i to I(i). Then Fn = Fn+1, so it suffices to check that
condition (2) holds. Let r(wi) = wk, so, by induction, E(φi) = E(φk). In particular,
E(φk) ⊆ E(φi) for the index i ∈ I(i), so condition (2) holds automatically. Since this was the
only modification to In, condition (2) follows for other indices by the inductive hypothesis.

USING LATTICE GEOMETRY TO FIND ALL STABLE ALLOCATIONS 19

Case 5 : There is a transition (F, I)n → (F, I)n+1 by adding a vertex w(φ) to Fn while
processing the collision digraph G = (V,E) during Subroutine 3.5 at item (b). Note that
In = In+1. By construction, we have c(w(φ)) ⊆ R(Fn), so this vertex addition is of the form
required in Lemma 3.7, which shows that Fn+1 is still a rooted forest.

Next, we show that defining conditions (2) and (3) still hold for Fn+1, making use of
our characterization of the collision digraph in Lemma 3.9 above. Let vk, v` ∈ Sj, a strong
component of G = (V,E) (after removing irrelevant singletons at item (2), and denote
r(wk) = wk′ and r(w`) = w`′ . By (strong) induction, F ′ is a problem forest, so by Lemma 3.8
above, E(φ`′) = E(φ`) and E(φk) = E(φk′). Moreover, the indices I ′ at initialization satisfy
condition (2), by the inductive hypothesis again, so Lemma 3.9 shows that, in fact, E(φ`′) =
E(φ`) = E(φk) = E(φk′). Now w(φ) is added to Fn with c(w(φ)) = {r(wk) : vk ∈ Sj}. Then
the previous argument shows that wi, wk ∈ c(w(φ)) implies that E(φi) = E(φk). Since these
are the only new sibling relations added in Fn+1, by the inductive hypothesis we have shown
condition (2) defining a problem forest for Fn+1.

For the final defining condition of a problem forest, consider adding φ as above and let
vi ∈ Sj. Clearly i ∈ Hj, so that i ∈ Kj. Then φ � φi, so E(φ) ⊆ E(φi), and the second
statement of condition (3) is satisfied. If vk ∈ Hj, then there is a directed path vi → vk,
so E(φi) ⊆ E(φk) by statement (3) of Lemma 3.9 above. In particular, E(φi) � φk for all
k ∈ Kj. Then E(φi) � φ = mink∈Kj

φk, so that E(φi) ⊆ E(φ), and we are done. This is the
only new parent-child relation added to Fn, so, using the inductive hypothesis, Fn+1 satisfies
defining condition (3) of a problem forest.

For condition (2) regarding collision indices, it suffices to consider w` with r(w`) = w(φ),
because otherwise the statement follows directly from the inductive hypothesis, since w(φ)
is the only root added to Fn. Let k′ ∈ I(`) and suppose r(w`) = w(φ). Let wj the root of w`
in Fn Then it must be that p(wj) = w(φ); for instance, by Lemma 3.7, since otherwise the
reachable set of some w′ ∈ Fn would have changed as Fn → Fn+1. Then by Lemma 3.8, we
have E(φ) = E(φj) ⊆ E(φk′), where we use the inductive hypothesis in the subset relation,
so condition (2) still holds for (F, I)n+1. This finishes the proof for this case.

Case 6 : There is a transition (F, I)n → (F, I)n+1 in Subroutine 3.4 when we add colli-
sion index j to In(i) for some newly created problem φi ∈ Qtemp when we “check for new
collisions”. Again, Fn = Fn+1, so it suffices to check that condition (2) holds. Now, by
assumption, φi � φj, so E(φi) ⊆ E(φj). Let r(wi) = wk. By the inductive hypothesis on
Fn = Fn+1, we have E(φi) = E(φk), so condition (2) holds immediately. As above, this was
the only modification to In, so condition (2) follows for other indices of In+1 by the inductive
hypothesis.

We have exhausted all cases, so the proof is complete. �

First, we handle termination analysis.

Lemma 3.11. FindStrictCore terminates in finite time

Proof. For any set E ⊆ (2X)A, define d(E) = maxφ∈E ‖φ‖1, where the set of preallocations
(2X)A is identified with a grid as above10. Similarly, let D(E) =

∑
φ∈E ‖φ‖1. Note that

by finiteness, both d(·) and D(·) take finitely many values on subsets of (2X)A. First, we
show that, for any problem collection Q0, InformationAcquire (Subroutine 3.4) terminates
in finitely many iterations.

10For x ∈ Rm, ‖x‖1 =
∑m

i=1 |xi|1 is the standard 1-norm .

20 MAX CYTRYNBAUM

Consider the sequenceQk
A formed by distinct states ofQA during Subroutine 3.4. Note that

if for any k ≥ 0 we have Qk+1
A = Qk

A\{φ} for some problem φ, then clearly d(Qk+1
A) ≤ d(Qk

A).
By inspection, all changes to QA are of this form, except when we add new problems after
triggering stopping condition (2). For this state change, note that ‖φ‖1 > max

i=1,...,m
‖φ− ei‖1,

so, in fact, if Qk+1
A = Qk

A \ {φ} ∪ (
⋃m
i=1{φ− ei}) then d(Qk+1

A) ≤ d(Qk
A). Then d(Qk

A) is
monotonically decreasing and ≥ 0. In particular, d(Qk

A) converges in finite time, by finiteness
of (2X)A.

Note that QI , the set returned by the algorithm, has φ ∈ QI =⇒ φ ∈ Q`
A for some `.

Then d(QI) = maxφ∈QI
‖φ‖1 = ‖φ′‖1 ≤ d(Q`

A) ≤ d(Q0) for some φ′ ∈ QI ∩ Q`
0. So we have

also shown d(Q0) ≥ d(QI).
The inequality d(Qk+1

A) ≤ d(Qk
A) is strict whenever φ′′ = argmaxφ′∈Qk

A
‖φ′‖1. For any k,

consider Qk
A at the top of the algorithm’s main for loop. Then φ′′ ∈ Qk

A, so, for at least one
iteration of the loop, d(Qk

A) decreases strictly. Since d(Qk
A) converges in finite iterations, the

subroutine’s while loop runs for only finitely many iterations, so the subroutine terminates.
Since all inputs are finite, Subroutine 3.5 clearly terminates in finite time.
Next, we show that the information combination stage of FindStrictCore terminates. Con-

sider distinct states of Q0 returned by InformationCombine, which form a sequence Qk
0, dur-

ing the inner while loop of FindStrictCore (line 6). We will show that the sequence D(Qk
0)

is monotonically decreasing.
Consider a single execution of InformationCombine (Subroutine 3.5) with input Qk

0. Let
S ∈ G be a strong component of the collision digraph G = (V,E) left in {Sj}j∈J after
removing irrelevant singletons at item (2). By construction, a vertex vi ∈ V has out-
degree 0 if φi 6∈ Qk

0. Then each vertex vi not associated with a preallocation φi ∈ Qk
0

must generate a singleton strong component {vi}, which is removed at item (2), so {vi :
vi ∈ Sj; j ∈ J } ⊆ {vi : φi ⊆ Qk

0}. Therefore, by disjointness of {Sj}j∈J , we can define a
surjection p : Qk

0 → Qtemp by setting p(φi) = mink∈Kj
φk ∈ Qtemp. By construction, for any

φj ∈ Qtemp, we have p−1({φj}) ⊇ {φk : wk ∈ c(wj)}. Note that, since i is added to I(i)
during initialization, if φi ∈ Sj and r(wi) = w`, then vi → v`; in particular, v` ∈ Hj, the
reachable set of strong component j. Lemma 3.6 shows that F is a problem forest at any
time during the algorithm, so if φk = p(φi), then φk � φi. By iterating, we have φ` � φi for
the root also. Then apparently p(φi) = mink∈Kj

φk � φi for any such i.

Using the map p above, we can expressQk
0 as a disjoint union of the formQk

0 =
⋃
φ∈Qtemp

p−1(φ).

Since p is a surjection, we may calculate d(Qtemp) = maxφi∈Qtemp ‖φi‖1 ≤ maxφi∈Qtemp d(p−1(φi)) =
d(Qk

0). Similarly, since D(·) is an additive set function, we can compute D(Qtemp) =∑
φ∈Qtemp

D({φ}) ≤
∑

φ∈Qtemp
D(p−1(φ)) = D(Qk

0) by surjection and the discussion above.

Since Qtemp is returned from the subroutine as Qk+1
0 , we have shown d(Qk+1

0) ≤ d(Qk
0) and

D(Qk+1
0) ≤ D(Qk

0) for any k.
In particular, the sequence D(Qk

0) is monotonically decreasing (and bounded below by 0),
so it converges at a finite value of k, again using finiteness of (2X)A. Suppose that for k ≥ 0
with Qk

0 the input to the subroutine InformationCombine, we have D(Qk
0) = D(Qk+1

0). By
the previous discussion, D(p−1(φj)) ≥ D({φj}) for any φj ∈ Qtemp, so each of these weak
inequalities must actually be equality. Since, in addition, p(φi) � φi for φi ∈ Qk

0, each of
these inequalities under the partial order � must also be an equality, with p−1(φi) = {φi}
for any φi ∈ Qtemp. Then Qk

0 = Qtemp = Qk+1
0 . This argument shows that the sequence of

sets Qk
0 actually converges in finite time as well.

USING LATTICE GEOMETRY TO FIND ALL STABLE ALLOCATIONS 21

Suppose, then, that Qk
0 = Qk+1

0 for some k and consider a single execution of Information-
Combine. Above, we showed that p−1(φi) = φi for any φi ∈ Qtemp. Then, as noted above,
we have {i} = {j : φj ∈ p−1(φi)} ⊇ {j : wj ∈ c(wi)}, so the expression defining a collision
in stopping condition (3) must be false for all φi ∈ Qtemp. Then the subroutine must return
I = ∅.

This shows that the information combination stage of the algorithm terminates. That is,
every sequence of executions of InformationCombine (Subroutine 3.5) is finite.

We have shown that the sequence d(Qk
0) is monotonically decreasing during the information

combination stage (the second while loop in FindStrictCore) as well as during a single eval-
uation of InformationAcquire (Subroutine 3.4). Then the sequence d(Qk

0) formed by distinct
states of Q0 at any time during FindStrictCore is monotonically decreasing. We complete
the termination proof by showing that d(Q0) decreases strictly at least once during a single
iteration of the outer while loop of FindStrictCore. Consider evaluating Subroutine 3.4 with
input Q0.

Case 1 : The collection QI returned by the subroutine is empty. Note that, by inspection,
Q0 6= ∅. Then apparently 0 = d(Qk+1

0) = d(QI) < d(Qk
0). Case 2 : Suppose QI 6= ∅ and

consider φi ∈ QI . Since φi was added to QI , there must exist k ≥ 0 such that (T 2
i)kφi 6=

(T 2
i)k+1φi by the definition of stopping condition (2). Suppose that the sequence stops at

φ′ = (T 2
i)`φi. In particular, by monotonicity of the Tarski sequence for 〈φi〉, we must have

φ′ ≺ φi strictly. Note that, for all such φi ∈ QI , we add w(φ′) = p(wi) (at item (a)), so that
r(p(wi)) = r(w(φ′)). Then r(wi) = r(w(φ′)), which we denote by r(wi) = wk.

The algorithm returns Q′0 ≡ QI which is an input for Subroutine 3.5. In Subroutine 3.5, we
form strong components of the collision digraph G = (V,E). Suppose that Wj is the strong
component containing vi. We add i to I(i) before forming the edges of G, so (vi, vk) ∈ E.
Then vk ∈ Hj, the reachable set of strong component Sj. Therefore, φ′′ = min`∈Kj

φ` �
φk � φ′ ≺ φi, where the second inequality follows by Lemma 3.6, which shows that F is
a problem forest, and because w(φ′) is a descendant of w(φk). Using the map p : Q′0 →
Qtemp above, we have p(φi) = φ′′. We calculate as before d(Qtemp) = maxφj∈Qtemp ‖φj‖1 <
maxφj∈Qtemp d(p−1(φj)) = d(Q′0), where the inequality is strict by the work above, noting

that φi ∈ p−1({φ′′}). Since Qk+1
0 ← Qtemp when this subroutine returns, we have shown

that, in both cases above, the sequence d(Qk
0) decreases strictly during a single execution of

the outer while loop in FindStrictCore.
Above, we argued that d(Qk

0) converges in finite time. Therefore, the outer while loop of
FindStrictCore executes only finitely many times, so the algorithm terminates. �

We are now ready to prove correctness of FindStrictCore. We will make heavy use of the
collision digraph and problem forest structure results proved above.

Theorem 3.12. FindStrictCore returns with EC = E(T). In particular, the algorithm finds
all core outcomes C(X,U) = {Y : φY ∈ EC}.

Proof. We will show that at any point during the execution of FindStrictCore, a fixed point
φ ∈ E(T) satisfies either (i) φ ∈ EC , the fixed points already found by the algorithm, or (ii)
there exists a φ′ ∈ Q0 such that φ � φ′. We work by induction on k, the number of distinct
states Qk

0 of the set of active problems Q0 during the main loop of FindStrictCore11. For
any set of problems W , we denote E(W) ≡

⋃
φ∈W E(φ).

11Note that EC changes only if Q0 changes, so it suffices to consider distinct states of Q0

22 MAX CYTRYNBAUM

For the base case, note that if φ ∈ E(T) or φ ∈ E(T), then, by Lemma 3.1 above,

E(T) = {φ} or {φ}, so the algorithm is correct. Suppose the algorithm continues, and we set

Q0 =
⋃m
i=1{φ − ei} (identifying (2X)A with a grid as above). Since E(T) � φ = max E(T 2)

and φ 6∈ E(T), the inductive hypothesis is clearly satisfied. Then suppose by induction that
(i) and (ii) above are satisfied up to k = n. We show that these statements still hold for
k = n+ 1.

Throughout, for a set E, we let E ′ denote the state of E at subroutine initialization, and
E ′′ its state at algorithm return. There are two main cases, corresponding to each subroutine.

Case 1 : There is a state change Qk
0 → Qk+1

0 and EkC → Ek+1
C when InformationAcquire

(Subroutine 3.4) returns. InformationAcquire returns a set QI of “collided” problems, which
will be combined during Subroutine 3.5. In the above notation, Q′′I = Qk+1

0 is the set of
problems and E ′′temp is the set of fixed points returned by the subroutine. By the inductive
hypothesis, we have E(T) ⊆ E ′C∪E(Q′0). Then, to show that no fixed points are “lost” during
the subroutine, it suffices to show that E(Q′0) ⊆ E ′′temp ∪ E(Q′′I).

Formally, we work by induction on ` ≥ 0 (within this subroutine), for distinct states of
the tuple

(QA, Q0, QI , Etemp)`
Note that, by inspection of the algorithm, the last three sets in the tuple change only if
QA changes. Therefore, it suffices to consider distinct states12 of the working set of active
problems QA. We will show by induction that for any ` ≥ 0 if φ′′ ∈ E(φ) for some problem
φ ∈ Q`

0 then either φ′′ ∈ E `temp or there exists φ′ ∈ Q`
A∪Q`

I with φ′′ � φ′ � φ (GAR). We call

such a relationship a guarantee (GAR) on φ′′ afforded by the problem φ′ ∈ Q`
A ∪Q`

I , which
is either still active, or in the set of “collided” problems to be returned by the algorithm. In
particular, this will show that E(Q`

0) ⊆ E(Q`
A)∪E(Q`

I)∪E `temp for all ` ≥ 0. By Lemma 3.11,
this subroutine terminates with Q′′A = ∅. Also, as we will show shortly, E(Q′0) ⊆ E(Q′′0),
where Q′′0 is the state of Q0 when the algorithm returns. Then, assuming the inductive result
above, we would have E(Q′0) ⊆ E(Q′′0) ⊆ E(Q′′A) ∪ E(Q′′I) ∪ E ′′temp = E(Q′′I) ∪ E ′′temp, so that no
fixed points are “lost” during this subroutine.

First, we show that E(Q′0) ⊆ E(Q′′0). Consider the beginning of Subroutine 3.4, where
we remove redundant subproblems (items (i) and (ii)). If φ ∈ Q′0 and φ � min E(T 2), then
E(φ) = ∅ since we checked φ = min E(T 2) 6∈ E(T). Otherwise, if we remove φ from Q0 during
this loop, then there is a φ � φ′ ∈ Q0, so that E(φ) ⊆ E(φ′), and no fixed points are lost. Let
QR

0 denote the state of Q0 after this removal step. Then E(QR
0) = E(Q′0). After this step, we

only add, never remove, points from Q0, so we have E(Q′0) ⊆ E(QR
0) ⊆ E(Q′′0), as required.

We now begin the induction. The base case is clear, since we set Q′A ← Q′0 at initialization.
Then suppose by induction that our hypothesis holds up to ` = t. We will show that
guarantees of the form (GAR) above still exist for all φ ∈ E(Qt+1

0). By the argument above,
it suffices to consider changes to QA after the redundant problem removal step, since no fixed
points guarantees are lost during this step. There are several cases.

Subcase 1 : There is a state change Qt
A → Qt+1

A when stopping condition (1) or (2) is
triggered for a problem φi ∈ Qt

A, which is then removed Qt+1
A ← Qt

A \ {φi}. Let φ0 ∈ Qt
0

and φ ∈ E(φ0) and suppose that φ 6∈ E t+1
temp, the set of fixed points found by ` = t + 1. We

12Note that by “distinct states” we mean distinct states that occur at outside of the algorithm’s stopping
condition processing code. Thus, we are allowed to remove a fixed point from QA ∪QI and add it back later
while processing a single problem φi without creating a “distinct” state.

USING LATTICE GEOMETRY TO FIND ALL STABLE ALLOCATIONS 23

show that the guarantee (GAR) on φ cannot be afforded by φi, so it is safe to remove φi
from Qt

A ∪ Qt
I . Suppose that φ � φi. We have φ′ = (T 2

i)m
′
φi for some m′ ≥ 0, and φ′ � φ

or Tφ′ = φ′. By the Tarski argument discussed earlier in the text, E(φi) ⊆ E(φ′), so, in
fact, φ � φ′. But φ 6= φ′, since we check if φ′ ∈ E(T) when processing φi, and we assumed
φ′ ∈ E t+1

temp. Then φ ≺ φ′ strictly. For stopping condition (1), note that E(T) ⊆ E(T 2) � φ.
Combining these, φ ≺ φ′ � φ, which is a contradiction. For stopping condition (2), note
that by Lemma 2.8, which shows that no fixed points of T are ordered strictly by “≺”, if
Tφ′ = φ′ then there can be no φ ≺ φ′ fixed by T , so this also results in a contradiction.
By the inductive hypothesis, there must be φ′′ 6= φi such that φ′′ ∈ Qt

A ∪ Qt
I and affords a

guarantee φ � φ′′ � φ0. Then φ′′ ∈ Qt+1
A ∪Qt+1

I since it is not removed, so we are done.
Subcase 2 : There is a state change Qt

A → Qt+1
A when stopping condition (3) is triggered

for a problem φi ∈ Qt
A. Again, we have φ′ the lowest element of the Tarski sequence,

and, as above, E(φi) ⊆ E(φ′). We then remove φi and add φ′ − ei for 1 ≤ i ≤ m, so
Qt+1
A = Qt

A \ {φi} ∪
(⋃

i∈I{φ′ − ei}
)
, where I ⊆ {1, . . . ,m} are the indices such that φ′ − ei

is non-redundant (as in item (ii)). Let φ ∈ E(φ0) for φ0 ∈ Q0, and suppose that φ 6∈ E t+1
temp,

so we need to show that there exists some guarantee for φ. Suppose φ � φi � φ0 as
in (GAR) above, so that φ � φ′ by the Tarski argument. In fact, φ ≺ φ′, because we
check if φ′ ∈ E(T), as in the previous case. Then we must have, φ � φ′ − ei for some
i. If i ∈ I then φ � φ′ − ei ≺ φ′ � φ0, so φ′ − ei ∈ Qt+1

A gives a new guarantee (GAR)
on this fixed point for φ0 ∈ Q0. No other points of Qt

A ∪ Qt
I are removed, so we are

done. Suppose, conversely, that i 6∈ I; that is, the problem φ′ − ei is redundant. Then
φ− ei = φ′′ ∈ Qt. Note that Qt ⊆ Qt

0 ∪Q′, and suppose that φ′′ ∈ Qt
0. So we actually have

φ ∈ E(φ′′) ∩ E(φ0). By working with the guarantee (GAR) for φ′′ ∈ Qt
0 (rather than the

guarantee for φ0 ∈ Qt
0), by the inductive hypothesis for ` = t there exists φg ∈ Qt

A ∪Qt
I such

that φ � φg � φ′′ = φ′ − ei ≺ φ′ � φi. Then φg 6= φi, so, in particular, it is not removed at
step t+ 1, and we have φg ∈ Qt+1

A ∪Qt+1
I . Then, in either case, we still have a guarantee on

all fixed points.
Subcase 3 : There is a state change Qt

A → Qt+1
A when stopping condition (4) is triggered

for a problem φi ∈ Qt
A. Note that in this case we just move φi between sets. Specifically,

Qt+1
A = Qt

A \ {φi} and Qt+1
I = Qt

I ∪ {φi}. Then Qt
A ∪ Qt

I = Qt+1
A ∪ Qt+1

I , so none of the
guarantees of the form (GAR) above can change, which finishes the subcases.

By the remarks at the beginning and since the algorithm terminates by Lemma 3.11, we
have shown by induction that E(Q′0) ⊆ E(Q′′I)∪E ′′temp, so we are done. Returning to the first

induction, we have shown that in the case where Qk
0 → Qk+1

0 during InformationAcquire
(Subroutine 3.4), we have, using the inductive hypothesis, that E(T) ⊆ E(Qk

0) ∪ EkC ⊆
E(Qk+1

0) ∪ EkC ∪ E ′′temp = E(Qk+1
0) ∪ Ek+1

C .

Case 2 : There is a state change Qk
0 → Qk+1

0 when InformationCombine (Subroutine 3.5)
returns. In the notation above, Q′0 is the input to the subroutine, and Q′′temp = Qk+1

0 is the
set returned by the subroutine. We will argue that, for any φ ∈ Q′0, there is a φ′ ∈ Q′′temp
such that E(φ) ⊆ E(φ′). It will follow immediately that E(Qk

0) = E(Q′0) ⊆ E(Q′′temp) =

E(Qk+1
0). The proof relies crucially on the collision digraph and problem forest structure

results developed above.
Fix φi ∈ Q′0. By construction, we have vi ∈ G, where G = (V,E) is the collision digraph

built during the algorithm. Then vi ∈ Sj, a strong component of G left over after trimming
irrelevant singletons (at item (2)). By our key Lemma 3.7 on the structure of the rooted

24 MAX CYTRYNBAUM

forest F during the algorithm, F is a problem forest, as in Definition 3.2, at any time during
the execution of FindStrictCore. Moreover, condition (2) of Lemma 3.7 also holds, showing
that collision indices are compatible with F . Then Proposition 3.9, our result showing that
fixed point relationships are reflected in the structure of the collisiion digraph, can be applied.
Let Hj denote the reachable set of strong component Sj. By item (3) of the graph structure
proposition, if φk ∈ Hj, then E(φi) � φk. Now we have E(φi) � min

vk∈Sj

φk ≡ φ′, which is

added to Qtemp. In particular, E(φi) ⊆ E(φ′), where φ′ ∈ Q′′temp = Qk+1
0 . This shows that

E(Qk
0) ⊆ E(Qk+1

0), so, in particular, E(Qk
0) ∪ EkC ⊆ E(Qk+1

0) ∪ Ek+1
C since EkC = Ek+1

C .
We have exhausted both cases, so this completes the induction. By our termination

analysis in Lemma 3.11, Q0 = ∅ when the algorithm returns, so we have shown that E(T) ⊆
E(Q0) ∪ EC = EC . Moreover, we only add φ to EC after checking that Tφ = φ, so clearly
EC ⊆ E(T). Then EC = E(T). That is, by Lemma 2.3 and Lemma 2.4 above, for any φ ∈ EC ,
we have φ = φY for some Y ∈ C(X,U), and this exhausts all core allocations. �

3.5.1. Discussion. Note that, given φ = φY ∈ EC , we have Y =
⋃
a∈A Ya =

⋃
a∈A φ(a), so

the allocation corresponding to φ can be found by taking a union. The performance of the
algorithm for a given problem instance depends on the exact structure of the lattice E(T 2).
For instance, it could be that by stopping a Tarski sequence (T 2)kφ before it converges and
running InformationCombine, we miss some φ′ in the sequence for which T 2φ′ ≺ φ, showing
that E(φ) = ∅. In particular, FindStrictCore and the original Echenique and Yenmez (2013)
algorithm are incommensurable. Our algorithm uses the heuristic that evaluation of the T
operator is very costly, and we prefer to make progress through the lattice by using fast
graph algorithms to share information between problems whenever this is possible.

4. Maximal Domain Results and Generalizations

4.1. Weak Core Allocations. It is tempting to try to extend the fixed point construction
C(X,U) = E(T) and associated algorithm on the lattice (2X)A to the full class of weak
core allocations WC(X,U) ⊇ C(X,U) in the general matching with contracts setting con-
sidered above. Indeed, for many classical matching models13 C(X,U) = WC(X,U), so the
construction extends directly.

At first glance, it appears that such a generalization will be forthcoming. Similarly to the
core case, for a ∈ A we define a set

W (φ, a) = {Z ∈ 2Xa : ∃Y ∈ 2X s.t. Ya = Z, Yb �b φ(b) ∀b ∈ d(Y) \ {a}} ∪ {φ(a)}
which can be thought of as the collection of allocations Z ∈ 2Xa with Y ⊇ Z that agent a

could successfully propose to the coalition d(Y). Define a new operator T2 : (2X)A → (2X)A

by T2(φ)(a) = max
�a

W (φ, a). Note that in this case, the inequalities in the definition of

W (φ, a) are strict, and we are also forced to include φ(a) ∈ W (φ, a), which is not necessary
for core. Define the fixed allocation set E(T2) = {Y ∈ 2X : T2(φY) = φY } as above. With
these modifications, we get a similar characterization of WC(X,U) as the (coordinated) fixed
points of an operator defined on the lattice (2X)A.

Lemma 4.1. WC(X,U) = E(T2)

13This is the case, for instance, in the marriage problem. See Blair (1988) and Echenique and Oviedo
(2006) for more on solution concept equivalences in a classical setting.

USING LATTICE GEOMETRY TO FIND ALL STABLE ALLOCATIONS 25

Proof. Suppose Y 6∈ E(T2). Denoting φ = φY , we have T2(φ) 6= φ. Then there exists a ∈ A
with T2(φ)(a) 6= φ(a). In particular, T2(φ)(a) = Za for some Z satisfying Zb �b φ(b) = Yb
for b ∈ d(Z) \ {a} Moreover, φ(a) ∈ W (φ, a), so we have Za �a φ(a). Then, in fact, Zb �b Yb
for all b ∈ d(Z), so Z blocks Y and Y 6∈WC(X,U).

Suppose Y 6∈ WC(X,U). Let Z be a blocking set and denote φ = φY as above. Then
Zb �b Yb for b ∈ d(Z) by definition. d(Z) 6= ∅ by definition, so fix a ∈ d(Z). Then apparently
Za ∈ W (φ, a) and, moreover, Za �a Ya = φ(a). In particular, T2(φ)(a) �a φ(a), so that
φ 6∈ E(T2). This completes the proof. �

Remark : Note that, by definition of the set W (φ, a), we must have T2φ � φ for any
φ ∈ (2X)A. For the original operator T with E(T) = C(X,U), this relationship only holds
when φ ∈ CP; that is, φ = φY for some allocation Y ⊆ X. Because of this, T2 may also fix
uncoordinated preallocations, as we demonstrate shortly. Even more problematically, this
fact shows that the monotonically decreasing Tarski sequence (T 2)kφ, which is the centerpiece
of this approach, can never actually decrease.

The following example shows that the structure results for the operator T , which the fixed
point approach crucially relies on, may fail for the operator T2 even for the the setting of
two-sided matching with bilateral contracts.

Proposition 4.2. The operator T2 may not be antitone. The squared operator T 2
2 may not

be isotone. T2 may fix uncoordinated preallocations; that is, E(T2) 6⊆ CP.

Proof. Consider an embryonic trading network with two sellers and a buyer, so that A =
{s1, s2, b}. We let (i, j)k denote the contract where i sells k units to j. Suppose that agents
have preferences as follows:

s1 :{(s1, b)}, ∅s1
s2 :{(s2, b)

2}, {(s2, b)}, ∅s2
b :{(s1, b), (s2, b)}, {(s2, b)

2}, {(s2, b)}, {(s1, b)}, ∅b

Thus, b prefers would like to execute two trades and prefers to buy from s2, but, conditional
on availability of a contract with both sellers, prefers to be diversified. The contract space
is X = {(s1, b), (s2, b)

2, (s2, b), ∅s1 , ∅s2 , ∅b}, and we assume that all elements of 2Xa not listed
in the relations above are ranked below14 the single-agent contract ∅a for a ∈ A.

Now define preallocations φ and φ′ by setting φ′(a) = ∅a for all a ∈ A and φ(b) = {(s2, b)
2},

φ(s1) = ∅s1 , φ(s2) = {(s2, b)
2}. Note that φ = φY , where Y ∈ WC(X,U) is the weak core

allocation consisting of a single contract {(s2, b)
2}. Then by Lemma 4.1 above T2(φ) = φ.

Since φ′(a) = ∅a for all a, any trade listed above is a strict improvement for each agent
involved, so every agent can propose its most preferred network structure. Thus, we get
φ′′ = T2(φ′) defined by φ′′(b) = {(s1, b), (s2, b)} and φ′′(s1) = {(s1, b)} and φ′′(s2) = {(s2, b)

2}.
φ′′ is the unanimously most preferred preallocation, so, by the remarks above, T2(φ′′) = φ′′.

Note that φ′′ � φ and T2(φ′′) � T2(φ), so T2 is not antitone on the lattice (2X)A. We
also have φ � φ′ but T 2

2 (φ′) � T 2
2 (φ), so T 2

2 is not isotone. Finally, {(s2, b)} ∈ φ′′(b), but
{(s2, b)} 6∈ φ′′(s2), so φ′′ is not coordinated. However, we have shown that T2(φ′′) = φ′′, so
E(T2) 6⊆ CP. �

14Note that the specific order of allocations ranked below ∅a is irrelevant with respect to the evaluation
of T2, since trivially ∅a ∈W (φ, a) for any a.

26 MAX CYTRYNBAUM

4.1.1. Discussion. These results, and the previous remark, show that the fixed point ap-
proach to finding all weak core allocations is doomed to fail on the lattice (2X)A. Similar
negative results can be shown, for instance, for an operator T3 : (2X)A → (2X)A associated
with the set of all stable matchings S(X,U). Our results do not prove, however, that there
is no fixed point method for finding all core allocations WC(X,U) on any lattice. Indeed,
our construction of an algorithm to find all stable matchings relies on adapting the approach
for C(X,U) above to a lattice and partial order more appropriate for this solution concept.

4.2. Generalized Information Sharing and Applications. In this section, we briefly
describe how the notion of information sharing and the collision digraph algorithm developed
above can be extended to similar economic problems on more general complete lattices. This
extension is the basis of our algorithm for finding all stable allocations. We also show how
information sharing may be used to find Nash equilibria in games with strategic complemen-
tarities (GSC), extending Echenique (2007).

Let (L,�) be a complete lattice, and suppose P ⊆ L is a set of points that we are would like
to find. For instance, these could be stable allocations S(X,U) in the lattice (2X ,⊆), where
subsets are partially ordered by set inclusion. Let F : L → L be isotonic with P ⊆ E(F);
that is, the fixed points of F bound P . Note that for any xi ∈ L, where i is some index,
the cone {x′ ∈ L : x′ � xi} ≡ Li ⊆ L is also a complete lattice. Suppose that an isotone
operator Fi : Li → Li can be defined for each such sublattice.

4.2.1. Fixed Point Guarantees. To complete the construction, we need to assume some eco-
nomic structure. Specifically, suppose that we can show E(F) satisfies E(F)∩Li ⊆ E(F i) (E).
Guarantees of this form are surprisingly common in economics. For the problem of finding
E(T) ⊆ (2X)A, this guarantee is given by Lemma 3.1, which holds because truncating agents’
preference profiles shrinks the set of available blocking allocations. The corresponding re-
sult in Echenique (2007) for Nash equilibria is similarly derived from the invariance of Nash
equilibria under truncation of strategy profiles. For finding stable allocations, the guarantee
is given by the invariance of substitutability under coarsening of the contract language X.

The following discussion shows how to extend our information sharing algorithm for finding
E(T) ⊆ (2X)A to an arbitrary complete lattice, conditional on an economic guarantee of the
form above.

4.2.2. Example - Information Sharing and Collision Chains. In this example, we show how
to extend the notion of combining subproblem information to general complete lattices.
Suppose that we currently have n active problems on lattices Li = {x′ ∈ L : x′ � xi}. Denote
E(F) ∩ Li ≡ E(xi) and Pi = P ∩ Li Forming the Tarski sequence for F i on the sublattice
Li, we find yi = max E(F i), obtaining a guarantee of the form Pi ⊆ E(F)∩Li ⊆ E(F i) � yi.
Suppose then that there are collisions yi � xi+1 for 1 ≤ i ≤ n − 1. Then, for instance,
P1 � y1, so P1 ⊆ P2. In fact, we can conclude that P1 � y2 � x3, so P1 � y3. Continuing in
this way, we get a guarantee P1 � yi for 1 ≤ i ≤ n. Since L is a complete lattice, we find
that P1 �

∧n
i=1 yi, whereas without information sharing we only knew that P1 � y1. Note

that here
∧

denotes the meet15, or greatest lower bound, guaranteed to exist for any subset
of a complete lattice. The full collision digraph construction for sharing information extends

15For the lattice (2X ,⊆), for instance, and subsets Ai ⊆ X, we have
∧n

i=1Ai =
⋂n

i=1Ai, the standard
intersection.

USING LATTICE GEOMETRY TO FIND ALL STABLE ALLOCATIONS 27

to an arbitrary complete lattice by simply replacing the pointwise minimum mink∈K φk over
a reachable component K with the appropriate lattice meet.

To fully extend the algorithm, we discuss the intialization of new subproblems when, for
instance, a Tarski sequence for the subproblem on Li hits a fixed point of F i. For (2X)A, we
noted that {φ′ ≺ φ} ⊆

⋃m
i=1{φ′ � φ−ei}. In general, the lattice may not have such a regular

structure. For instance, for the (2X ,⊆), for Xi ⊆ X, we can form subproblems by noting
that {Y ∈ 2X : Y (Xi} ⊆

⋃
x∈Xi
{Y ∈ 2X : Y ⊆ X \ {x}}. For more general problems, we

work with whatever regularity is offered by the lattice.

4.2.3. Games with Strategic Complementarities. We briefly show how the above discussion
can be used to incorporate information sharing in the Echenique (2007) algorithm for finding
all pure strategy Nash equilibria in GSC. In GSC, we suppose a set of players 1 ≤ i ≤ n with
strategy profiles Si, each of which is a complete lattice. Then S =×n

i=1
Si is also a complete

lattice under the product order. Let βi : S → 2Si denote the best response correspondence
for player i. Then we can form a map F : S → S by setting Fi = sup βi(s) ∈ Si. Lemma 2 of
Echenique (2007) shows that this map is isotone on S. For a sublattice Sr =×n

i=1
{s′ ∈ Si :

s′ � sri}, we can define a restricted best response correspondence βr using only strategies
in Sr, which extends to an operator Fr : Sr → Sr as above. Lemmas 3 and 4 of Echenique
(2007) show that the guarantee E(F)∩Sr ⊆ E(Fr) of the form (E) above holds for this family
of operators Fr on sublattices Sr ⊆ S, showing that the information sharing algorithm above
may be applied.

5. Finding All Stable Matchings

In this section, we extend the information sharing technique developed above to an algo-
rithm for finding all stable allocations in the setting of two-sided many-to-many matching
with contracts under the assumption of substitutable preferences.

5.1. Model and Notation. In this section, we restrict our attention to two-sided many-to-
many matching with contracts, and we may think of the contract language as X = D×H×E,
where E is a finite set of contract terms. For instance, E could be a set of wages.

We define choice functions in the usual way for Y ∈ 2Xa as

Ca(Y) = argmax
Z⊆Y

Ua(Z)

and, with abuse of notation, extend these functions to Y ∈ 2X by setting Ca(Y) ≡ Ca(Ya).
An allocation Y is said to be stable if it is

(1) individually rational - Ca(Y) = Ya for all a ∈ A
(2) unblocked - There is no allocation Z 6= ∅ such that Zb ⊆ Cb(Y ∪ Z) for all b ∈ d(Z).

We let S(X,U) denote the set of all stable matchings.
We say that an agent a ∈ A has substitutable preferences if for any Y ⊆ Y ′ ⊆ X and z ∈ X

we have z ∈ Ca(Y
′ ∪ {z}) =⇒ z ∈ Ca(Y ∪ {z}). Similarly, a choice function Ca is said

to satisfy irrelevance of rejected contracts if for any Y ⊆ X and z 6∈ Y , if z ∈ Ca(Y ∪ {z})
then Ca(Y ∪ {z}) = Ca(Y). In this setting, for a set Y ⊆ X, we let CD(Y) =

⋃
d∈D Cd(Y)

and similarly let CH(Y) =
⋃
h∈H Ch(Y) denote the set of contracts chosen out of Y by the

hospitals.

28 MAX CYTRYNBAUM

5.1.1. Fixed Point Construction. Consider L = 2X × 2X , pairs of subsets of X, where we
define a partial order by (Z,W) � (Z ′,W ′) if and only if Z ⊆ Z ′ and W ′ ⊆ W . It is easy
to check that this partial order defines a complete lattice. For instance, given a collection of
(Zi,Wi) ∈ L, the greatest lower bound is

∧
i(Zi,Wi) = (

⋂
i Zi,

⋃
iWi) ∈ 2X × 2X . The least

upper bound is attained similarly by swapping unions and intersections.
As in Hatfield and Kominers (2015), we may define an operator Φ : L→ L by Φ(Z,W) =

(ΦD(W),ΦH(Z)), where ΦD(Z) = {z ∈ X : z ∈ CD({z} ∪ Z)} and ΦH(W) = {z ∈ X :
z ∈ CH({z} ∪W)}. As usual, we define the fixed point set E(Φ) ≡ {(Z,W) ∈ 2X × 2X :
Φ(Z,W) = (Z,W)}. It is easy to see from the definition of substitutability that this operator
is isotone on L. Therefore, by Tarski’s Theorem, E(Φ) is a non-empty lattice.

The following characterization of stable matchings is due to Hatfield and Kominers (2015)

Lemma 5.1 (Hatfield and Kominers (2015), Lemma 1). Assume that agents’ preferences
are substitutable and satisfy irrelevance of rejected contracts. Then for any (Z,W) ∈ E(Φ),
we have Z ∩W ∈ S(X,U). Conversely, for any Y ∈ S(X,U), there exists a unique (Z,W) ∈
E(Φ) such that Z ∩W = Y .

5.1.2. Definition of Sublattice Operators. - This lemma shows that, for the case of sub-
stitutable preferences, finding all stable matchings S(X,U) is equivalent to finding all fixed
points of the operator E(Φ). By isotonicity of Φ, the standard Tarski argument from previous
sections shows that the sequence formed by Φk(X, ∅) is monotonically decreasing, and fixes at
(X,Y) = max E(Φ). Similarly, iterating Φk(∅, X) eventually fixes at a (X, Y) = min E(Φ).
Note then that any (Z,W) ∈ E(Φ) (corresponding to stable allocation Z ∩ W) satisfies
X ⊆ Z ⊆ X and Y ⊆ W ⊆ Y .

This observation motivates our definition of operators on sublattices of L. Specifically,
for a fixed element (X,Y) � (Xi, Yi) � (X, Y), where i is an index, we let Li ≡ {(Z,W) :
(Z,W) � (Xi, Yi)} and note that this is a complete sublattice. Define Φi : L→ L by setting
Φi(Z,W) = (ΦD

i (W),ΦH
i (Z)), where ΦD

i (W) = {z ∈ Xi \ X : z ∈ CH({z} ∪W)} ∪ X and
ΦH
i (Z) = {z ∈ Y \ Yi : z ∈ CD({z} ∪ Z)} ∪ Yi.

5.2. Fixed Point Guarantees and Initializing Subproblems. The following result
shows that the family of operators introduced above satisfies the conditions required for
an information sharing algorithm on the lattice L = 2X × 2X .

Lemma 5.2. Suppose that agents’ preferences are substitutable over X. Let the sublattice
Li and Φi : L → L be defined as above for some (Xi, Yi) � (X, Y). Then the following
statements are true

(1) Φi : Li → Li and is isotone.
(2) E(Φ) ∩ Li ⊆ E(Φi).

Proof. First we show (1). Since X ⊆ Xi, and the hospitals are only allowsed to choose
from Xi, clearly ΦD

i (W) ⊆ Xi for any W ∈ 2X . By definition, ΦH
i (Z) ⊇ Yi, so apparently

Φi(Z,W) � (Xi, Yi) for any (Z,W) ∈ L. In particular, Φi : Li → Li. Suppose that
(Z,W) � (Z ′,W ′) are elements of Li, so that Z ⊆ Z ′ and W ′ ⊆ W . By Proposition 4 of
Hatfield and Kominers (2015), substitutability is preserved under a coarsening of the contract
language to any X ′ ⊆ X. Thus, hospitals’ preferences are substitutable over Xi \ X ⊆ X,
and, similarly, doctors’ preferences are substitutable over Y \ Yi ⊆ X. In particular, by
substitutability for doctors, {z ∈ Y \Yi : z ∈ CD({z}∪Z ′)} ⊆ {z ∈ Y \Yi : z ∈ CD({z}∪Z)}.
Then ΦH

i (Z ′) ⊆ ΦH
i (Z) by taking the union with Yi on both sides. A similar argument shows

USING LATTICE GEOMETRY TO FIND ALL STABLE ALLOCATIONS 29

that W ′ ⊆ W =⇒ ΦD
i (W) ⊆ ΦD

i (W ′). Then apparently Φi(Z,W) � Φi(Z
′,W ′), which

finishes (1).
For (2), let (Z,W) ∈ E(Φ) such that (Z,W) � (Xi, Yi); that is, Z ⊆ Xi and Yi ⊆ W . Note

that, from the discussion above, X ⊆ Z and W ⊆ Y . Let z ∈ Z \ X ⊆ Xi \ X. Then the
fixed point assumption shows z ∈ ΦD(W) = {z ∈ X : z ∈ CH({z} ∪W)}. In particular, z is
also chosen by the hospitals out of Xi \X, so z ∈ {z ∈ Xi \X : z ∈ CH({z} ∪W)}. Then
Z = (Z \X) ∪X ⊆ ΦD

i (W). Clearly, {z ∈ Xi \X : z ∈ CH({z} ∪W)} ⊆ ΦD(W), so taking
the union with X on both sides gives ΦD

i (W) ⊆ ΦD(W), noting that X ⊆ ΦD(W) = Z.
Then ΦD

i (W) = Z. Similarly, let w ∈ W \ Yi ⊆ Y \ Yi. Then w ∈ ΦH(Z) =⇒ w ∈
{z ∈ Y \ Yi : z ∈ CH({z} ∪ Z)}. This shows W = (W \ Yi) ∪ Yi ⊆ ΦD

i (Z). Clearly
{z ∈ Y \ Yi : z ∈ CH({z} ∪ Z)} ⊆ ΦH(Z), so taking unions on both sides with Yi, noting
that Yi ⊆ W by assumption, gives ΦH

i (Z) ⊆ W , so, in fact, ΦH
i (Z) = W . Then we have

shown (Z,W) ∈ E(Φi), so E(Φ) ∩ Li ⊆ E(Φi), completing the proof. �

5.2.1. Initialization of Subproblems. As in section 2, for i ∈ I some index set we let 〈(Xi, Yi)〉
denote the problem of finding E(Φi) ⊆ Li = {(X, Y) � (Xi, Yi)}. Recall that we form the
Tarski sequence Φk

i (Xi, Yi), which, unless another stopping condition is triggered, converges
to max E(Φi) � E(Φ)∩Li. After the Tarski sequence fixes, we need to initialize new problems
to find elements of E(Φ) below max E(Φi). For the core algorithm, the Euclidean structure
gave a natural way to do this, by forming problems φ− ei for 1 ≤ i ≤ m, where we identified
(2X)A with a subset of Rm.

Here, the lattice has a less regular structure; however, we can show that there is still a
simple way to initialize subproblems without missing any points of E(Φ). Suppose that a
Tarski sequence converges to (X ′, Y ′) = max E(Φi). If (Z,W) ∈ E(Φ) and (Z,W) ≺ (X ′, Y ′)
then, by the lattice order, either there exists x ∈ X ′ \ X with Z ⊆ X ′ \ {x} or there is
y ∈ Y \ Y ′ with Y ′ ∪ {y} ⊆ W . Thus, to ensure that we find the fixed point (Z,W), we
initialize |X ′ \X|+ |Y \ Y ′| new problems of the form 〈(X ′ \ {x}, Y ′)〉 and 〈(X ′, Y ′ ∪ {y})〉,
with x and y as above.

5.3. Full Algorithm for Finding all Stable Allocations. In this section, we describe
the full information sharing algorithm for finding all stable allocations in two-sided many-
to-many matching with contracts. In what follows, we assume that agents’ preferences are
substitutable, so from work in Hatfield and Milgrom (2005) the collection of stable allocations
S(X,U) must be non-empty.

Stopping Conditions : As above, we let Q be a collection of problems, which we think of as
previously solved problems that still contain information useful for finding E(Φ). During the
algorithm, for a problem 〈(Xi, Yi)〉, we compute the Tarski sequence Φk

i (Xi, Yi), k ≥ 0. Define
the following stopping conditions for an element Φk

i (Xi, Yi) ≡ (X ′, Y ′) of this sequence.

(1) (X ′, Y ′) � (X, Y)
(2) Φi(X

′, Y ′) = (X ′, Y ′)
(3) There exists (Xj, Yj) ∈ Q with (X ′, Y ′) � (Xj, Yj) and (Xi, Yi) 6� (Xj, Yj)

Condition (1) corresponds to the problem exiting the lattice E(Φ). For Condition (2), the
Tarski sequence fixes, and we are forced to initialize new problems. For Condition (3), the
problem 〈(Xi, Yi)〉 “collides” with some problem in Q, so we stop the sequence and wait for
the information sharing subroutine.

Initialization: To initialize the algorithm, set Q = Q0 = EC = ∅, and create an empty
forest F = (∅, ∅). Iterate Φk(∅, X) and Φk(X, ∅), which converge in finitely many iterations

30 MAX CYTRYNBAUM

to (X,Y) and (X, Y), the largest and smallest elements of E(Φ), respectively. Add each of
these to the fixed point collection EC . For each x ∈ X \X, add (X \ {x}, Y) to Q0 and Q,
and add the vertex w(X \ {x}, Y) to F as an isolated root Similarly, for each y ∈ Y \Y , add
(X,Y ∪{y}) to Q0 and Q, and add the vertex w(X,Y ∪{y}) to F as an isolated root. Then
run Algorithm 1, where we modify the subroutines InformationAcquire (Subroutine 3.4) and
InformationCombine (Subroutine 3.5) as shown below.

Subroutine 5.3 (InformationAcquire). Initialize QA = Q0, and set Etemp = QI = I = ∅.
If (Xi, Yi) ∈ Q0 has either (i) (Xi, Yi) � (X, Y) or (ii) there exists (Xj, Yj) ∈ Q0 s.t.

(Xi, Yi) ≺ (Xj, Yj), then remove (Xi, Yi) from QA, Q0, and Q.
While QA 6= ∅, do the following:
For each (Xi, Yi) ∈ QA, compute the Tarski sequence Φk

i (Xi, Yi) until a stopping condition
(as above) is triggered for some k = `. Set (X ′, Y ′) = Φ`(Xi, Yi), and do the following:

(a) Add w(X ′, Y ′) to F with c(w(X ′, Y ′)) = w(Xi, Yi)
(b) Remove (Xi, Yi) from QA.

For stopping conditions16 (2) and (3), do the following:

(2) (i) If Φ(X ′, Y ′) = (X ′, Y ′), then add (X ′, Y ′) to Etemp. Also, (ii) for each x ∈ X ′ \X
and y ∈ Y \ Y ′, add (X ′ \ {x}, Y ′) and (X ′, Y ′ ∪ {y}) to Q0, QA, and Q if this
problem is not already in Q. Finally, (iii) for each problem (X ′′, Y ′′) just added, add
w(X ′′, Y ′′) to F as an isolated root.

(3) By assumption, the stopping condition was triggered by a “collision” with some (Xj, Yj) ∈
Q. Then (i) add (Xi, Yi) to QI and (ii) add j to collision index set I(i).

Return (QI , I, Etemp).

Subroutine 5.4 (InformationCombine). To initialize, form an empty digraph G = (V,E)
with V = E = ∅, set Qtemp = ∅, and add i to I(i) for each (Xi, Yi) ∈ Q0. Next, build the
collision digraph as follows:

For each (Xi, Yi) ∈ Q0, (i) add vi to V , and for all collision indices j ∈ I(i), (ii) compute
wk = r(wj) and (iii) add vk to V and (vi, vk) to E. Next, do the following computations with
G:

(1) Compute the strong components G of G.
(2) Remove {vk} ∈ G if (Xk, Yk) 6∈ Q0, leaving trimmed components {Sj}j∈J
(3) Compute the reachable set Hj for each Sj with j ∈ J .

For each j ∈ J , combine information to form new problems:

(a) Add (X ′, Y ′) =

(⋂
vk∈Hj

Xk,
⋃

vk∈Hj

Yk

)
to Qtemp.

(b) Add the vertex w(X ′, Y ′) to F with c(w(X ′, Y ′)) = {r(wk) : vk ∈ Sj}.
Set I(i) = ∅ for i ∈ I. To check for new collisions, do the following:
For each (Xi, Yi) ∈ Qtemp, if ∃(Xk, Yk) ∈ Q and wj ∈ c(wi) such that (X ′, Y ′) � (Xk, Yk)

and (Xj, Yj) 6� (Xk, Yk), then add collision index k to I(i).
Set Q0 ← Qtemp and Q← Q ∪Qtemp.
Return (Q0, I).

16If both stopping conditions (1) and (3) both occur, use condition (1): the problem has left the lattice
E(Φ), so there is no reason to seek further information.

USING LATTICE GEOMETRY TO FIND ALL STABLE ALLOCATIONS 31

5.3.1. Discussion. We briefly note the substantive differences between this algorithm and
Algorithm 1 for finding all core outcomes. Here, when forming new problems during Infor-
mationCombine, we replace the pointwise minima used in Algorithm 1 with the appropriate
meet (greatest lower bound) for the lattice 2X ×2X . For the order “�”, the meet is given by
intersections in the first component and unions in the second, as shown above. Note that,
for this algorithm, the number of subproblems initialized when a Tarski sequence fixes is
not constant. This is necessary because 2X × 2X has a less regular structure than the Eu-
clidean lattice (2X)A used in section 2. Finally, for stable allocations, there is no equivalent
of Lemma 2.7, since E(Φ) are fixed points of an isotone (not antitone) operator. Thus, after
finding (Z,W) ∈ E(Φ), we still have to search the lattice {(X ′, Y ′) ≺ (Z,W)} strictly below
(Z,W), whereas, for Algorithm 1, Lemma 2.7 shows that we can stop immediately. Because
of this, Subroutine 5.3 has one fewer distinct stopping condition. Otherwise, the algorithm
is structurally identical, with slightly different notation.

The following result is an easy extension of Lemma 3.11 and Theorem 3.12.

Theorem 5.5. FindStable returns EC = E(Φ). In particular, {Z ∩W : (Z,W) ∈ EC} =
S(X,U), so the algorithm finds all stable allocations.

Proof. This is a straightforward extension of the auxiliary lemmas and correctness proof
provided above, using Lemma 5.1 from Hatfield and Kominers (2015) to get all of S(X,U)
from the fixed point set E(Φ). Here, we just note the substantive differences between the
proofs.

In the analysis for Algorithm 1, we think of (2X)A as a sublattice of Rm. Thus, meet
for this lattice is a pointwise minimum. For instance, we form new problems by setting
φ = minvk∈Hj

φk. For finding all stable allocations, every such minimum must be replaced
by the lattice meet for L = 2X × 2X . Given a collection {(Zi,Wi)}i∈I ⊆ 2X × 2X , the meet,
or greatest lower bound, takes the form

∧
i∈I(Zi,Wi) =

(⋂
i∈I Zi,

⋃
i∈IWi

)
.

Our termination analysis in Lemma 3.11 needs to be slightly modified. For a set E ⊆
2X × 2X , define d(E) = max

(Z,W)∈E
(|Z|+ |X \W |) and D(E) =

∑
(Z,W)∈E

(|Z|+ |X \W |). These

functions are positive and take finitely many values on the lattice 2X × 2X . Moreover, D(·)
is additive on disjoint subsets of 2X × 2X . The rest of the termination analysis follows as
before.

Finally, as noted in the discussion above, there is an extra stopping condition in Algo-
rithm 1 corresponding to the guarantee from Lemma 2.7 that no two points φ, φ′ ∈ E(T 2)
can be compared under �. In the analysis, we use this lemma to argue that E(T) ∩ {φ′′ :
φ′′ ≺ φ} = ∅ whenever φ ∈ E(T). No such analysis is necessary for finding stable outcomes,
because this stopping condition is not used. �

5.3.2. Remark. Consider the worst case scenario where Φi : Li → Li fixes at (Xi, Yi) =
maxLi for every (X, Y) � (Xi, Yi) � (X,Y). If we were to initialize every subproblem of
the form (Xi \{x}, Yi) and (Xi, Yi∪{y}), we would create

(
|X| − |X|+ |Y | − |Y |

)
! problems

in total, whereas greedy search only needs to check 2|X|−|X|+|Y |−|Y | points. However, in
Subroutine 5.3, we only initialize non-redundant problems, so this does not happen, and the
algorithm does weakly better than greedy search in all cases.

32 MAX CYTRYNBAUM

6. Conclusion

The approach developed above gives an alternative method for computing reasonable
economic outcomes in general matching markets when substitutability is not guaranteed.
We show how our technique has several applications to computing objects of interest in
economic problems for which there is a lattice structure. The information sharing approach
developed here also gives the first algorithm for finding all stable allocations in bilateral
matching with contracts with substitutable preferences.

USING LATTICE GEOMETRY TO FIND ALL STABLE ALLOCATIONS 33

References

Blair, C. (1988). The lattice structure of the set of stable matchings with multiple partners.
Mathematics of Operations Research 13, 619–628.

Echenique, F. (2007, July). Finding all equilibria in games with strategic complements.
Journal of Economic Theory 135 (1), 514–532.

Echenique, F. and J. Oviedo (2006). A theory of stability in many-to-many matching mar-
kets. Theoretical Economics 1, 233–273.

Echenique, F. and M. B. Yenmez (2013). A solution to matching with preferences over
colleagues. Games and Economic Behavior 59, 46–71.

Gross, J. L. and J. Yellen (2005). Graph theory and its applications. CRC Press .
Gusfield, D. and R. Irving (1989). The stable marriage problem: Structure and algorithms.

MIT Press .
Hatfield, J. W. and S. D. Kominers (2012). Matching in networks with bilateral contracts.

American Economic Journal: Microeconomics 4, 176–208.
Hatfield, J. W. and S. D. Kominers (2015). Contract design and stability in many-to-many

matching. Harvard Business School Working Paper.
Hatfield, J. W. and P. Milgrom (2005). Matching with contracts. American Economic

Review 95, 913–935.
Irving, R. and P. Leather (1986). The complexity of counting stable marriages. SIAM

Journal of Computing 15, 655–667.
Kojima, F. (2015). Finding all stable matchings with couples. Journal of Dynamics and

Games .
Kominers, S. D. (2010). Matching with preferences over colleagues solves classical matching.

Games and Economic Behavior 68 (2), 773–780.
Mart́ınez, R., J. Massó, A. Neme, and J. Oviedo (2004). An algorithm to compute the full

set of many-to-many stable matchings. Mathematical Social Sciences 47, 187–210.
McVitie, D. G. and L. B. Wilson (1971). The stable marriage problem. Communications of

the ACM 14, 486–490.
Roth, A. E. and E. Peranson (1999). The effects of the change in the NRMP matching

algorithm. American Economic Review 89, 748–780.
Roth, A. E. and M. Sotomayor (1996, November). Stable outcomes in discrete and continuous

models of two-sided matching: A unified treatment. Review de Econometria.
Schwarz, M. and M. B. Yenmez (2011, March). Median stable matching for markets with

wages. Journal of Economic Theory .
Sethuraman, J., C. Teo, and L. Qian (2006). Many-to-one matching: Geometry and fairness.

Mathematics of Operations Research 31, 581–596.

	1. Introduction
	1.1. Introduction and Motivation
	1.2. Related Literature

	2. Characterizing Core Allocations
	2.1. Model and Solution Concepts
	2.2. Fixed Preallocations and the Core
	2.3. The Lattice of Fixed Preallocations

	3. Sharing Lattice Information to Find All Core Allocations
	3.1. Introduction
	3.2. Intuition and Notation
	3.3. Informal Algorithm Description
	3.4. Full Algorithm
	3.5. Algorithm Analysis

	4. Maximal Domain Results and Generalizations
	4.1. Weak Core Allocations
	4.2. Generalized Information Sharing and Applications

	5. Finding All Stable Matchings
	5.1. Model and Notation
	5.2. Fixed Point Guarantees and Initializing Subproblems
	5.3. Full Algorithm for Finding all Stable Allocations

	6. Conclusion
	References

