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Abstract

A recent literature in econometrics models unobserved cross-sectional hetero-
geneity in panel data by assigning each cross-sectional unit a one-dimensional, dis-
crete latent type. Such models have been shown to allow estimation and inference
by regression clustering methods. This paper is motivated by the finding that the
clustered heterogeneity models studied in this literature can be misspecified, even
when the panel has significant discrete cross-sectional structure. To address this
issue, we generalize previous approaches to discrete unobserved heterogeneity by
allowing each unit to have multiple, imperfectly-correlated latent variables that
describe its response-type to different covariates. We give inference results for a k-
means style estimator of our model and develop information criteria to jointly select
the number clusters for each latent variable. Monte Carlo simulations confirm our
theoretical results and give intuition about the finite-sample performance of esti-
mation and model selection. We also contribute to the theory of clustering with an
over-specified number of clusters and derive new convergence rates for this setting.
Our results suggest that over-fitting can be severe in k-means style estimators when
the number of clusters is over-specified.
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1 Introduction
Researchers often worry that, while their models impose a common parameter, there may
actually be significant cross-sectional heterogeneity in the structural relationship between
outcomes and observed covariates. Even with panel data, however, estimating distinct
regression coefficients for each cross-sectional unit can be noisy or infeasible when the
time dimension is small. Clusterwise regression methods (e.g. Lin and Ng (2012), Bon-
homme and Manresa (2015)), which model individual heterogeneity as a function of a
one-dimensional discrete latent type, have recently become popular as a viable compro-
mise between the common parameter assumption and full heterogeneity. However, as we
show, this discretization of heterogeneity can be misspecified even when the panel has
significant cross-sectional structure.

This paper introduces panel data models with multiple, imperfectly correlated latent
types, significantly enriching the set of panel structures that can be handled by clus-
tering methods. In particular, our approach is motivated by a class of data-generating
processes where units are clustered along multiple latent dimensions or “response-types”
to distinct blocks of the covariate vector. We motivate this generalization with several
examples from finance and production function estimation. The main contribution of
this paper is to modify existing clustering methods for use in this larger family of mod-
els and show that they can likewise be used to perform inference on regression parameters.

Following Bonhomme and Manresa (2015) (henceforth BM), we establish consistency and
asymptotic normality for a k-means style estimator in our setting. The estimation algo-
rithm is iterative and alternates between (1) solving a least-squares problem to estimate
cluster parameters for each block and (2) updating latent types for each cross-sectional
unit based on a unit-wise predictive criterion. As in BM, our proof proceeds by establish-
ing asymptotic equivalence with the oracle estimator where each unit’s latent types are
known. We extend the approach in Ando and Bai (2016) to give a Cp style information
criterion to choose the number of clusters (types) for all the latent variables simultane-
ously.

In general, the true number of clusters in a given data set is unknown. Thus, the behavior
of estimators with a misspecified number of clusters is important both for model selec-
tion theory as well as for our understanding the finite-sample properties of clustering
estimators. Here, we make some contributions to the theory of models with an over-
specified number of clusters, improving the convergence rates given in Liu et al. (2019)
for the linear regression setting. In contrast to the well-specified case, difficulty obtaining
the “fast rate” Op(

1
NT

) when we over-specify the number of clusters suggests that over-
fitting may be severe when the number of clusters is over-specified. We conjecture that√
T -consistency may be optimal for over-specified models.

1.1 Motivating Example - Production Function Estimation

Consider panel data on firms’ production levels and factor usage. We are interested in
estimating the firm-specific production functions

yit = θi1Lit + θi2Kit + θi3Mit + θi4Elecit + eit (1.1)
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where yit is a measure of output and Lit, Kit,Mit are labor, capital and materials (all
in logs), and Elecit is a measure of electricity usage. Suppose that the heterogeneity in
factor elasticities can be well approximated by

θi` ∈ {θlow` , θmid` , θhigh` } 1 ≤ ` ≤ 4

Ignoring endogeneity in input choice, we can estimate Equation 1.1 with using clusterwise
regression, as in BM. The problem with this approach is readily apparent - although there
are only 3 ·4 = 12 parameters, θi can take up to 34 = 81 distinct values. Thus, estimating
this model with clusterwise regression would require k = 81 clusters to be well-specified.
For a panel of 200 firms, this would lead to estimation with approximately N/81 ≤ 3
firms in each regression, in spite of significant cross-sectional homogeneity. However, with
k = 81 clusters the model is also significantly over-parameterized. For instance, there
will be 27 distinct clusters with each level of labor elasticity coefficient.

The problem is that current clustering models assume limited heterogeneity in the in-
dividual parameter vectors θi. In our example, however, cross-sectional heterogeneity
takes the form of a few discrete elasticity levels for each input factor, while the support
of θi itself is large. This suggests a model with multiple latent heterogeneity types. For
instance

θi = (θ1(ci1), θ2(ci2), θ3(ci3), θ4(ci4))

with latent type ci` for 1 ≤ ` ≤ 4 controlling the elasticity level of factor `.

1.2 Related Literature and Outline

Early contributions to the econometric literature on clustering include Sun (2005) and
Buchinsky et al. (2005). Linear panel data models with discrete unobservable heterogene-
ity have recently been studied in Lin and Ng (2012), Bonhomme and Manresa (2015), Su
et al. (2016), Wang et al. (2016), Dzemski and Okui (2018). Our asymptotic normality
results for the well-specified case closely follow the analysis pioneered in Bonhomme and
Manresa (2015). Ando and Bai (2016) extends clustering methods to linear factor models
and gives an information criterion for choosing the number of clusters. We develop a sim-
ilar Cp-style criterion in our setting. Outside of the linear case, Zhang et al. (2019) and
Chen et al. (2019) study clustered linear conditional quantile regression, and Bonhomme
and Manresa (2019) considers discrete latent types as an approximation to continuous
unobserved heterogeneity. Liu et al. (2019) studies clustering in M-estimation with an
over-specified number of groups. We build on their techniques and significantly sharpen
their rate results for the linear case. In contemporaneous work, Cheng et al. (2019)
consider a clustering model with two latent types in a GMM setting. By contrast, we
allow for B > 1 latent types in a linear model with individual fixed effects. Clusterwise
regression was initially proposed in Späth (1979) as “Algorithm 39 - Clusterwise Linear
Regression.”

Further afield, this paper is related to a number of literatures in statistics and computer
science, such as the literature on clustering functional data, e.g. Serban and Wasserman
(2005), Yamamoto and Terada (2014), Vogt and Linton (2019), and subspace clustering,
e.g. Candes and Soltanolkotabi (2012). In statistics, related methods include homogene-
ity pursuit, proposed in Ke et al. (2015). See also Ke et al. (2016) and Lian et al. (2019).
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In the Bayesian literature, clusterwise regression is also known as multilevel regression;
see Gelman and Hill (2007).

The rest of the paper is organized as follows: we introduce our model and estimator in
section 2. Asymptotic properties of the estimator and consistency of model selection are
given in section 3. Section 4 discusses models with an over-specified number of clusters.
Monte Carlo simulations are given in section 5, and proofs in section A. Supplementary
appendix B collects technical lemmas and other ancillary discussions.

2 Model and Estimation

2.1 Model

Let yit and xit denote repsonse and covariates for t = 1, . . . , T time periods and i =
1, . . . , N cross-sectional observations. The covariate vector xit ∈ Rp is divided into
1 ≤ ` ≤ B blocks x`it, where xit = (x1

it, . . . , x
B
it), and B denotes the total number

of blocks. We let k = (k1, . . . , kB), where k` denotes the number of distinct latent
types (clusters) associated with the `th block. Possible cluster assignments are denoted
c = (c1, . . . , cB) ∈

∏
`[k`] ≡ C. For instance, a unit in cluster 1 in the first block and

cluster 3 in the second block would have c = (1, 3).

Each cross-sectional unit belongs to exactly one cluster for each block. We let γ : [N ]→∏
`[k`] denote an assignment of cross-sectional units to cluster vectors, so that γ(i) = ci.

The set of all possible cluster assignments is denoted Γ. In the main specification, we
assume that the response yit is given by

yit = x′itθ(ci) + eit (2.1)

with the `th block parameter selected by the latent variable ci`

θ(ci) = (θ1(ci1), . . . , θB(ciB)) (2.2)

Thus, each covariate grouping ` is associated with k` parameter sub-vectors with θ`(c`) ∈
Rd` . Our goal is to jointly estimate the true parameter θ0 and true cluster assignments
γ0(i) = (c0

i1, . . . , c
0
iB) of each cross-sectional unit. In appendix C.1, we also give results

for the model with individual fixed effects

yit = x′itθ(ci) + ai + eit (2.3)

Relationship with Clusterwise Regression: The model above nests clusterwise re-
gression (as in Lin and Ng (2012)) when B = 1. For B > 1, it is statistically equivalent
to clusterwise regression when the conditional pdf P(c0

i(−`)|c0
i`) is degenerate (perfectly

correlated types). Similarly, clusterwise regression (B = 1) with exponentially many
clusters k =

∏B
`=1 k` and exponentially many constraints nests our model. For instance,

let p = B and assume θ` ∈ {±1} for each `. Then our model would be equivalent to a
clusterwise regression model with 2p clusters and p2p−1 linear equality constraints.

Example - Exchange Rates: Consider financial market data with yit the exchange
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rate against USD of country i at time t, poilt the price of crude oil, bit a measure of the
country’s business cycle and rt the US discount rate, we model

yit = θi1p
oil
t + θi2bit + θi3rt + eit

Due to differences in national industry composition, the magnitude and composition
of foreign trade, financial openness and so on, we may expect heterogenous marginal
responses θi` of yit to each of the factors above. As in the introduction, we may model θi` ∈
{θ`(1), . . . , θ`(k`)}, corresponding to k` different sensitivity levels to factor `. However,
we don’t expect these unobserved types to be perfectly correlated across factors. For
instance, we might expect both Venezuela and China to have large θi1 but very different
θi3. A factor error structure could be accommodated using the techniques in Ando and
Bai (2016).

2.2 Estimator

We define our estimator of the parameter θ0 and cluster assignment γ0 as

(θ̂, γ̂) = argmin
γ∈Γ,θ∈Θ

1

NT

N∑
i=1

T∑
t=1

(yit − x′itθ(ci))2 (2.4)

We let Q̂(θ, γ) denote the sample risk in 2.4. There are many algorithms available for the
least squares partitioning problem above1. One benchmark approach, known as Lloyd’s
algorithm (Lloyd (1982)) in the setting of k-means clustering, takes a coordinate ascent
approach to the problem in 2.4, alternately updating the parameters θ and assignments
γ until convergence.

Lloyd’s Algorithm - Fix a division of the covariate vector xit = (x1
it, . . . , x

B
it) into

blocks with x`it ∈ Rd` and fix the number of clusters k = (k1, . . . , kB) in each block.
Our approach is a modification of Lloyd’s algorithm for k-means clustering. We perform
coordinate ascent on the sample objective Q̂(θ, γ) by alternating parameter updates and
cluster assignment updates until convergence.

(1) Randomly initialize parameters θ1 and cluster assignments γ1.
(2) Given θs, set γs+1 = argminγ∈Γ Q̂(θs, γ).
(3) Given γs+1, update θs → θs+1.
(4) Repeat (2) and (3) until convergence.

Since problem 2.4 is not generally convex, we repeat steps (1) through (4) from different
random initializations (in parallel), and take the estimate that achieves the lowest sample
risk Q̂. See appendix C.2 for more discussion of the implementation of this algorithm
and related computational issues.

1See, for instance, the discussion in BM Appendix S1.
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3 Asymptotic Properties

In this section, we investigate the asymptotic properties of the estimator (θ̂, γ̂) defined
above as N, T → ∞. In what follows, we assume the data is generated from the model
2.1 with (θ0, γ0) the true slope parameters and cluster assignment function. We let ‖ · ‖
denote the usual Euclidean norm.

3.1 Consistency

Assumption 3.1. We make the following assumptions

(a) For each ` ∈ [B], the parameter space Θ` ⊂ Rd`×k` is compact

(b) 1
NT 2

∑N
i=1

∑T
t=1

∑T
s=1 eiteisx

′
itxis

p→ 0

(c) ‖θ0
`a − θ0

`b‖ ≡ d(`, a, b) > 0 for each pair of clusters a, b ∈ [k`]

(d) DefineM(c, c′, γ) ≡ 1
NT

∑
i,t xitx

′
it1(c0

i = c′)1(ci = c) and let ρ(c, c′, γ) ≡ λmin(M(c, c′, γ)).
Then there exists δ > 0 such that infc′,γ maxc ρ(c, c′, γ) ≥ δ − oP (1) as N, T →∞.

Assumption 3.1.(a) is the usual parameter space compactness condition. Assumption
3.1.(b) can be seen as limiting the time-series dependence of errors and covariates, aver-
aged over cross-sectional units. Condition 3.1.(c) ensures that the clusters within each
grouping are non-identical. The final assumption 3.1.(d) is the analogue in our setting
of assumption S2(a). in BM. This condition is used to ensure curvature of the sample
risk function Q̂. If there is a common parameter (B = 1, k = 1), this is the usual non-
collinearity condition for pooled panel regression. See section S4.2 in the supplementary
appendix of BM for further discussion.

Cluster Label Ambiguity. The minimizer argminγ∈Γ,θ∈Θ Q̂(θ, γ) is only unique up to
permutations of the labels in C and their associated parameter vectors in θ. Thus, the
c ∈ C used to label estimated clusters in each block is arbitrary, and to resolve this
ambiguity we need to fix a correspondence σ` : [k`] → [k`] between true and estimated
cluster parameters for each `2. Let

σ`(a) ≡ argmin
b∈[k`]

‖θ̂`b − θ0
`a‖ (3.1)

and define the estimator of the true parameter θ0
`a to be θ̂`σ(a). Note that this is infeasible

without access to the true parameters θ0.

Lemma 3.2. Under the assumptions in 3.1, P(σ` invertible)→ 1 as N, T →∞

By the lemma, we can relabel the estimated clusters θ̂`σ(a) → θ̂`a, and this is well-defined
w.h.p as N, T →∞.

Theorem 3.3. Under the assumptions in 3.1, for all groupings ` and a ∈ [k`], we have

‖θ0
`a − θ̂`a‖ = oP (1)

2Note that, for finite T , it can be the case that θ̂(ĉi) 6= θ̂(ĉj), but c0i = c0j , so the estimates θ̂(ĉi) do
not in general induce a well-defined estimator of any fixed cluster parameter θ0`a.
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equivalently
min
x∈C
‖θ̂(x)− θ(c)‖ = op(1) ∀c ∈ C

as N, T →∞.

See section A.1 for the proof of the theorem and lemma.

3.2 Asymptotic Equivalence

In this section, we establish asymptotic equivalence of θ̂ to the infeasible oracle estimator
with known clusters. We need the following assumptions in addition to those already
stated in 3.1.

Assumption 3.4. Make the following assumptions

(a) 1
NT 2

∑
i

∑
t,s ‖xit‖2‖xis‖2 = OP (1)

(b) Define M c
NT = 1

NT

∑
i,t 1(c0

i = c)xitx
′
it. Then there exists ρ > 0 such that for all

a > 0, this sequence of matrices satisfies minc∈C λmin(M c
NT )

p→ ρ as N, T →∞.

(c) There exist constants b > 0 and d1 > 0 and sequence α(t) ≤ e−bt
d1 such that for all

i ∈ [N ] {xit}t and {xiteit}t are strongly mixing with coefficients α(t).

(d) There exist constants f > 0 and d2 > 0 such that for all i ∈ [N ] and all z > 0,
for all components xjit, x

j′

it of the vector xit we have P(|xjitx
j′

it − E(xjitx
j′

it)| > z) and
P(|eitxjit − Eeitx

j
it| > z) are bounded above by e1−(z/f)d2 .

(e) The uniform limits maxi∈[N ]
1
T

∑
tE[eitxit] → 0 and mini∈[N ]

1
T

∑
t E(x′it(θ(c) −

θ(c′)))2 → d(c, c′) hold as T →∞, and d(c, c′) ≥ dmin > 0 for c 6= c′.

(f) There exists M ′ > 0 such that for all a > 0

max
i∈[N ]

P

(
1

T

∑
t

‖xit‖2 > M ′

)
= o(T−a)

We will show that θ̂ is asymptotically equivalent to the infeasible oracle estimator where
true cluster membership c0

i is known for all i. Define the problem

Q̃(θ) ≡ 1

NT

N∑
i=1

T∑
t=1

(yit − x′itθ(c0
i ))

2

θ̃ = argmin
θ∈Θ

Q̃(θ) (3.2)

The following theorem shows that θ̂ and θ̃ are asymptotically equivalent.

Theorem 3.5. Let the assumptions in 3.1 and 3.4 hold. Then for any a > 0 and as
N, T →∞, we have

θ̂ = θ̃ + oP (T−a) (3.3)

Moreover, individual cluster estimates satisfy

P
(
∃i ∈ [N ] s.t. ĉi 6= c0

i

)
= o(1) + o(NT−a) (3.4)
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See appendix A.2 for the proof. Because of this theorem, for asymptotic sequences with N
growing at a sub-polynomial rate relative to T , it suffices to characterize the asymptotic
distribution of the estimator θ̃.

3.3 Inference

Notation - To aid the exposition, we start with a few definitions. For A ∈ Rp×q, let
vec(A) ≡ ((A1)′, . . . , (Aq)′)′ ∈ Rpq. Thinking of θ = {θ1, . . . , θB} as a collection of
matrices θ` ∈ Rd`×k` , we denote vec(θ) = (vec(θ1)′, . . . , vec(θB)′)′ ∈ Rdθ , where dθ ≡∑

` k`d` is the total dimension of vec(θ). For 1 ≤ ` ≤ B and a ∈ [k`], we use the block
index convention that vec(θ)`a refers to the d` dimensional sub-vector in the ath position
of the `th block. Using the notation above, for 1 ≤ `, s ≤ B and a ∈ [k`], b ∈ [ks] define
M̂ ∈ Rdθ×dθ and v ∈ Rdθ by

M̂`a,sb =
1

NT

N∑
i=1

T∑
t=1

xit`x
′
its1(c0

is = b)1(c0
i` = a) (3.5)

v`a =
1

NT

N∑
i=1

T∑
t=1

yit1(c0
i` = a)xit` (3.6)

w`a =
1

NT

N∑
i=1

T∑
t=1

eit1(c0
i` = a)xit` (3.7)

Proposition 3.6. The solution θ̃ to problem 3.2 satisfies

M̂ vec(θ̃) = v (3.8)

The proof follows by taking the first order conditions of 3.2 and rearranging. Note that
the first order conditions ∇θ`aQ̃(θ̃) = 0 can potentially vary with all the other parameters
θsb in the model (for s 6= `). Therefore, in contrast to the B = 1 case considered in
the existing literature, the estimator θ̃ is not equivalent to simply running k separate
regressions over the partition of the cross-sectional units.

Consider the following assumptions that allow us to characterize the asymptotic distri-
bution of the infeasible θ̃.

Assumption 3.7. We make the following assumptions

(a) There is a matrix Ω � 0 such that for all `, s ∈ [B] and 1 ≤ a ≤ k`, 1 ≤ b ≤ ks

1

NT

N∑
i,j=1

T∑
t,t′=1

E[eitejt′1(c0
i` = a)1(c0

js = b)xit`x
′
jt′s]→ Ω`a,sb (3.9)

as N, T →∞.

(b) E[eit1(c0
i` = a)xit`] = 0 for all `, a.

(c) M̂ p→M as N, T →∞, with M � 0.

(d)
√
NTw

d→ N (0,Ω) as N, T →∞.
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Theorem 3.8. Suppose that the assumptions in 3.7 are satisfied. Also suppose there is
some r > 0 such that

√
NT−r = o(1) as N, T →∞. Then we have
√
NT (vec(θ̂ − θ0))

d→ N (0,M−1ΩM) (3.10)

The proof of this theorem is given in appendix A.2.

Consider the case where cross-sectional units are independent, then under assumption
3.7.(b), the terms in 3.9 with i 6= j vanish. In this case, we propose the HAC estimators

Ω̂`a,sb =
1

NT

N∑
i=1

T∑
t,t′=1

êitêit′1(ĉi` = a)1(ĉis = b)xit`x
′
it′s

V̂ = M̂−1Ω̂M̂−1 (3.11)

where M̂ is as in equation 3.5. Variance estimators of this form were originally proposed
in Arellano (1987), and their asymptotic theory for N, T →∞ jointly was first analyzed
in Hansen (2007). For further discussion on adapting the results of Hansen (2007) to our
setting, see appendix A.4.

3.4 Model Selection

In this section we let k0 = (k0
1, . . . , k

0
B) denote the true number of clusters and develop a

Cp-like criterion to estimate k0. We suppose that prior information can be used to bound
the true number of clusters from above k0 ≤ kmax. So far, we have defined the sample risk
Q̂(θ, γ) with domain the true parameter space i.e. θ ∈

∏
`Rd`×k0` and γ : [N ] →

∏
`[k

0
` ].

However, note that Q̂ = 1
NT

∑
i,t(yit − x′itθ(γ(i)))2 only varies through θ(γ(i)) ∈ Rp.

Thus, we can extend the domain of Q̂ to models with k 6= k0, since θ(γ(i)) ∈ Rp for any
conformable (θ, γ).3

We slightly strengthen some assumptions above

Assumption 3.9. Impose the following assumptions

(a) For all c ∈ Ck0, 1
NT

∑
i,t eitxit1(c0

i = c) = Op(1/
√
NT )

(b) With ρ(c, c′, γ) defined as in assumption 3.4.(b), there exists δ > 0 such that for all
k ≥ k0 we have

ρkNT ≡ min
c′∈Ck0

min
γ∈Γk

max
c∈Ck

ρ(c, c′, γ) ≥ δ − op(1)

(c) As N, T →∞

inf
j∈[N ]

λmin

(
1

T

∑
t

E[xjtx
′
jt]

)
→ λ > 0

(d) For some 0 < ε < 1
2
∧ d1d2

d1+d2
we have logN = o(T ε) as N, T →∞ , where d1, d2 are

the mixing and tail parameters defined in assumptions 3.4.(c) and 3.4.(d)
3Formally, let Q̂ :

⋃
k≥0

{∏
` Rd`×k` × [ [N ]→

∏
`[k

0
` ] ]
}
→ R≥0 with Q̂(θ, γ) = 1

NT

∑
i,t(yit −

x′itθ(γ(i)))2
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We can think of assumption 3.9.(a) as stating that a CLT holds for eitxit1(c0
i = c) for

each c ∈ Ck0 . This will be easiest to satisfy when E[eitxit1(c0
i = c)] = 0, a stronger form

of unconfoundedness. Assumption 3.9.(b) is the extension of assumption 3.1.(d) in our
consistency proof to the case of models with misspecified number of clusters. See section
?? of the supplementary appendix for a discussion of this condition. In the stationary case
with identically distributed cross-sectional units, having E[xitx

′
it] of full rank is sufficient

for assumption 3.9.(c). Finally, assumption 3.9.(d) requires that logN is sub-polynomial
in T as N, T →∞.

Information Criterion - Let (θ̂k, γ̂k) be the minimizer of Q̂ with (ki)i clusters and
denote Q̂(k) = Q̂(θ̂k, γ̂k). Then we define the Cp criterion

Cp(k) ≡ Q̂(k) + f(N, T )
∑
i

ki (3.12)

k̂ = argmin
k≤kmax

Cp(k)

We have the following result on consistency of model selection

Theorem 3.10. Suppose the assumptions in 3.9 hold. Let f(N, T ) be such that f(N, T )→
0 and for some ε as in assumption 3.9.(d), f(N, T )T 1−3ε →∞ as N, T →∞. Then

P(k̂ = k0)→ 1

as N, T →∞

For the proof, see appendix A.3.

Remark 3.11 (Choice of f). While any function f(N, T ) satisfying the conditions of
the theorem will give asymptotically consistent model selection, the choice of f will
significantly affects finite sample performance. To put f(N, T ) on the same scale as Q̂(k),
we use f(N, T ) = σ̂2g(N, T ) in our simulations, where σ̂2 is a consistent estimate of the
long run variance limN,T

1
NT

∑
i,tE[e2

it]. By lemma A.5 in the appendix, σ̂2 ≡ Q̂(kmax)

is such a consistent estimator. We find good performance with g(N, T ) = log T
T

in our
simulations. Alternatively, e.g. g(N, T ) = log T

T 1−ε′ for small ε′ can be used to be technically
consistent with the theory.

4 Overspecification of k
In this section, we report new results on the performance of k-means style estimators with
an over-specified number of clusters. The work in this section builds on and sharpens the
results in Liu et al. (2019) for the case of linear regression. Our proof of model selection
consistency in Theorem 3.10 heavily relies on the following result.
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Theorem 4.1. Suppose the assumptions in 3.1 hold. Then

sup
i∈[N ]

‖θ̂k(ĉki )− θ0(c0
i )‖2 = op(T

−1+4ε) (4.1)

min
x∈Ck
‖θ̂k(x)− θ0(c)‖2 = op(T

−1+3ε) (4.2)

1

N

∑
i

(θ̂k(ĉki )− θ0(c0
i ))

2 = op(T
−1+3ε) (4.3)

Proof. Follows from Proposition A.8, Proposition A.9, and Corollary A.7 in the appendix.

Remark 4.2. The preceding result can be compared with Liu et al. (2019) Theorem 1
and Lemma 5.16, which give op(1), op(1), and op(T

−1
2(1+d) ) rates (respectively) for each

of the losses above, with d = d1d2
d1+d2

. Note that their setting is a more general model
of clustered M-estimation. Our rate improvements come from (1) optimizing the Fuk-
Nagaev inequality in Merlevede et al. (2011) for our purposes (see lemma B.3) and (2) an
inductive strategy that allows us to “boost” Op(T

−1/4) rates arbitrarily close to Op(T
−1/2).

For a description of this approach, see lemma A.6 as well as the propositions and corollary
referenced above.

Remark 4.3. The rate established in equation 4.3 above is used to bound the magnitude
of over-fitting for estimators with k > k0, as in the second part of corollary A.7. A result
of this form is necessary to determine the complexity penalty in 3.10. In particular, in
contrast to the result in Liu et al. (2019), theorem 4.1 gives feasible rates for f(T ) that do
not depend on mixing parameters and tail bounds of eit and xit, which may be difficult
or impossible to estimate.

Remark 4.4. Difficulty obtaining the fast rate Q̂(k)− Q̂0 = Op(
1
NT

) for k > k0 suggests
that over-fitting may be severe under over-specification of k. Difficulty obtaining

√
NT -

consistency of θ̂k when k > k0 suggests a type of incidental parameter problem. In fact,
in the linear case it is known4 that under N →∞, finite T asymptotics, estimators with
k > k0 can suffer a bias of order up to 1√

T
.

5 Monte Carlo Simulations
In this section, we describe the results of our Monte Carlo simulations. All tables are
reported in section D of the appendix. Throughout, we denote

1. Param. MSE = 1
N

∑N
i=1 ‖θ̂(ĉi)− θ0(c0

i )‖2

2. Function MSE = 1
NT

∑N
i=1

∑T
t=1 ‖θ̂(ĉi)′xit − θ0(c0

i )
′xit‖2

3. Cluster Loss = 1
N

∑N
i=1 1(ĉi 6= c0

i )

We use two specifications for the joint distribution (xit, yit). (1) Specifications labeled
AR(1) take eit ∼ AR(1) and xit ∼ VAR(1). The AR process eit has normal innovations,
and xit has multivariate normal innovations with constant, diagonal covariance matrix.
The respective autocorrelation parameters are ρe = 0.3, ρx = 0.5. (2) Specifications

4See the example in BM, appendix S3.1.
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labeled HK use a heteroskedastic design inspired by Hansen (2007). With xit as above,
we use eit = ρeit−1 + vit ·

√
1
2

+ ‖xit‖2
2p

, with independent normal innovations vit. Inno-
vation variances are normalized so that Var(eit) = 1 for all designs and all (i, t). All
simulations use 500 independent samples. See appendix C.2 for additional details on the
computational specification.

5.1 Estimator Performance

Design 5.1 (Cluster Separation). We let p = 4, k = (2, 2), B = 2 and parameters

θ0
1 =

(
1 cosα
0 sinα

)
θ0

2 =

(
0 − sinα
1 cosα

)
where the columns of θ` list parameters of block 1 ≤ ` ≤ B. Thus, as α → 0, the
cluster parameters in each block rotate towards each other. Cluster estimation accuracy
radically worsens for small α. Coverage is around 80 − 90% for well-separated clusters.
As α→ 0, our confidence intervals do not account for variation due to cluster estimation,
and coverage is poor. Parameter loss is inverse U-shaped in cluster separation α. For
small α, classification of c0

i becomes worse, giving large losses on some units. For α near
0, misclassification contributes less to parameter loss since the cluster centers are very
close. Results are shown in Table 1.

Design 5.2 (Sample Size (N, T )). We use the specification in the simulation above with
α = π

2
. Cluster loss is quite insensitive to N , in line with the theory. Increasing T has a

much larger effect than N on parameter loss and coverage. For T = 5, we find coverage
actually decreases with larger N , which could be an example of the over-fitting issue
discussed in section 4. Results are shown in Table 2.

Design 5.3 (Number of Clusters). Again with p = 4 and B = 2, we let k = (k1, k2)
vary. We define clusters θ1a = (cos(2π

5
· a), sin(2π

5
· a))′ for 1 ≤ a ≤ k1 and similarly for

the second block. All performance measures decrease as the number of clusters increase.
Results are shown in Table 3.

Design 5.4 (Misspecification). In this simulation, we repeat the design above using
B = 1 and k = k1 ·k2, the minimal number of clusters for consistent estimation using the
single latent type assumption (B = 1) considered in the literature. As expected, there is
a significant power loss. Results are shown in Table 4.

Design 5.5 (Block Dimension Imbalance). We let p = 12, B = 2 and (k1, k2) = (2, 2).
We vary the grouping of covariates, taking the first block to be (xit1, . . . , xitm) for m ∈
{1, . . . , 6}. Coverage-small denotes the average coverage for parameters belonging to
the small block (xit1, . . . , xitm) and conversely for Coverage-large. Cluster loss-large and
Cluster loss-small are defined similarly. Classification and coverage are worse for the
block of smaller dimension m when m/(p −m) is very small, but quickly equalize as m
gets larger. Results are shown in Table 5.

Design 5.6 (Covariate Dimension). In this simulation, we take B = p (one latent variable
for each covariate) and study the effect of increasing p. We let k` = 2 for 1 ≤ ` ≤ p and
clusters θ`a = ±1 (a ∈ {1, 2}). Performance only slightly deteriorates as p increases.
Results are shown in Table 6
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5.2 Model Selection

Design 5.7 (Model Selection - Number of Clusters). We implement the Cp criterion
and study its performance on the DGP in design 5.3 above. We use penalty sequence
f(N, T ) = σ̂2 log T

T
, as in section 2. Model loss is calculated using average (over k1, . . . kB)

distance from the truth ‖k̂ − k0‖1/B. We set kmax = (6, 6) and use 200 independent
samples. For k0 = (2, 3), we estimate E‖k̂−k

0‖
B

= 0.03. For k0 = (4, 4), we find E‖k̂−k
0‖

B
=

0.73, with all estimates k̂ = (3, 3), (3, 4), or (4, 3). We view this performance as reasonable
given that the clusters are quite close in this design, though the results suggest we may
be slightly over-penalizing.

6 Conclusion
Clustering methods have recently become popular as a way of modeling limited hetero-
geneity in panel data. This paper motivates a family of panel structures, nesting the
standard regression clustering model, that have significant cross-sectional homogeneity
but are nevertheless ill-suited to estimation by the clustering methods currently consid-
ered in the literature We propose a modified procedure that simultaneously clusters on
multiple discrete latent types, significantly expanding the set of panel structures that can
be accommodated by these methods. We employ Lloyd’s algorithm to compute the esti-
mator, and give consistency and asymptotic normality results for the resulting estimates.
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A Proofs
Throughout the following proofs, unless otherwise specified maxi,

∑
i,
∑

t,
∑

c denote
maxi∈[N ],

∑
i∈[N ],

∑
t∈[T ],

∑
c∈C respectively.

A.1 Proof of Theorem 3.3

We define

Q̃(θ, γ) =
1

NT

N∑
i=1

T∑
t=1

(x′it(θ(ci)− θ0(c0
i ))

2 +
N∑
i=1

T∑
t=1

e2
it (A.1)

and recall that

Q̂(θ, γ) =
1

NT

N∑
i=1

T∑
t=1

(x′it(θ
0(c0

i )− θ(ci)) + eit)
2

we begin by showing uniform convergence of risk surfaces

Lemma A.1. supθ∈Θ,γ∈Γ

[
Q̂(θ, γ)− Q̃(θ, γ)

]
p→ 0 as N, T →∞

Proof. Define ∆θi = θ0(c0
i )− θ(ci) and note that

Q̂(θ, γ)− Q̃(θ, γ) =
2

NT

∑
i,t

eitx
′
it∆θi

Then we can compute

(
Q̂(θ, γ)− Q̃(θ, γ)

)2

=

[
1

N

∑
i

∆θ′i

(
1

T

∑
t

eitxit

)]2

≤ 1

N

∑
i

‖∆θi‖2 1

T 2

∥∥∥∥∥∑
t

eitxit

∥∥∥∥∥
2

.
1

NT 2

∑
i

∑
t,s

eiteisx
′
itxis = oP (1) (A.2)

The first inequality follows from Jensen and Cauchy-Schwarz, the next uses assumption
3.1.(a) on compactness, and the final equality is assumption 3.1.(b). Taking supθ∈Θ,γ∈Γ

on both sides of the inequality gives the statement of the lemma.

Now we make the usual observation that Q̃(θ̂, γ̂)− Q̃(θ0, γ0) = oP (1) since

Q̃(θ̂, γ̂) = Q̂(θ̂, γ̂) + [Q̃(θ̂, γ̂)− Q̂(θ̂, γ̂)] ≤ Q̂(θ̂, γ̂) + sup
θ∈Θ,γ∈Γ

[
(Q̃− Q̂)(θ, γ)

]
= Q̂(θ̂, γ̂) + oP (1) ≤ Q̂(θ0, γ0) + oP (1) = Q̃(θ0, γ0) + oP (1)

=⇒ 0 ≤ Q̃(θ̂, γ̂)− Q̃(θ0, γ0) ≤ oP (1)

The second equality follows from lemma A.1, and the third equality from the definition
of the estimator. The next step is to show curvature of the auxiliary sample risk Q̃. The
following curvature calculation is almost identical to the proof in appendix S6 in BM. For
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arbitrary θ ∈ Θ and γ ∈ Γ, we have

Q̃(θ, γ)− Q̃(θ0, γ0) =
1

NT

∑
i,t

(θ(ci)− θ0(c0
i ))
′xitx

′
it(θ(ci)− θ0(c0

i )) (A.3)

=
1

NT

∑
i,t

∑
c∈C

∑
c′∈C

(θ(c)− θ0(c′))′xitx
′
it(θ(c)− θ0(c′))1(c0

i = c′)1(ci = c)

=
∑
c,c′

(θ(c)− θ0(c′))′

(
1

NT

∑
i,t

xitx
′
it1(c0

i = c′)1(ci = c)

)
(θ(c)− θ0(c′))

LetM(c, c′, γ) ≡ 1
NT

∑
i,t xitx

′
it1(c0

i = c′)1(ci = c) and define ρ(c, c′, γ) ≡ λmin(M(c, c′, γ)).
Then the last line is bounded below by∑

c,c′

‖θ(c)− θ0(c′)‖2ρ(c, c′, γ) ≥
∑
c,c′

ρ(c, c′, γ) inf
x∈C
‖θ(x)− θ0(c′)‖2

≥
∑
c′

inf
c̃,γ

max
c
ρ(c, c̃, γ) inf

x∈C
‖θ(x)− θ0(c′)‖2

≥
(

inf
c̃,γ

max
c
ρ(c, c̃, γ)

)
max
c′

inf
x∈C
‖θ(x)− θ0(c′)‖2

Then we see that

oP (1) = Q̃(θ̂, γ̂)− Q̃(θ0, γ0) ≥
(

inf
c̃,γ

max
c
ρ(c, c̃, γ)

)
max
c′

inf
x∈C
‖θ̂(x)− θ0(c′)‖2

≥ δmax
c

inf
x∈C
‖θ̂(x)− θ0(c)‖2 − oP (1)

=⇒ max
c

inf
x∈C
‖θ̂(x)− θ0(c)‖2 = oP (1)

So that maxc infx∈C ‖θ̂(x)−θ0(c)‖2 = oP (1). The second equality uses assumptions 3.1.(d)
and 3.1.(a). As noted in the main text, the problem argminγ∈Γ,θ∈Θ Q̂(θ, γ) is invariant
to permutations of the labels in C and their associated parameter vectors in θ. The next
step is resolve this degeneracy by giving a well-defined estimator of θ0

`a for each ` ∈ [B],
a ∈ [k`].

Lemma A.2. Define σ(c) ≡ argminx∈C ‖θ̂(x)− θ0(c)‖2. The map σ`(x) ≡ σ(c)` for any
c such that c` = x is well defined.

Proof. Existence of the map is clear; we show it is a function. Note that minx∈C ‖θ̂(x)−
θ0(c)‖2 =

∑B
`=1 minx`∈[k`] ‖θ̂`(x`) − θ0

` (c`)‖2. Then for any c ∈ C, we have σ(c)` =

f(c`, θ
0, θ̂), so c` = c′` =⇒ σ(c)` = σ(c′)`.

In fact, since minx∈C ‖θ̂(x) − θ0(c)‖2 = oP (1), the proof of the lemma above shows that
‖θ0

`a − θ̂`σ`(a)‖ = oP (1) for all groupings ` and each cluster a ∈ [k`], completing the main
statement of the theorem.

We show that for each `, σ` is a bijection w.h.p. Since σ` : [k`]→ [k`], it suffices to show
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injection. Let a, b ∈ [k`], then we have

‖θ0
`a−θ0

`b‖ ≤ ‖θ0
`a− θ̂`σ`(a)‖+‖θ̂`σ`(a)− θ̂`σ`(b)‖+‖θ̂`σ`(b)−θ

0
` (b)‖ ≤ ‖θ̂`σ`(a)− θ̂`σ`(b)‖+XN,T

Where XN,T = oP (1) as N, T → ∞. Then {σ`(a) = σ`(b) =⇒ a = b} ⊂ {XN,T <
d(`, a, b)} by assumption 3.1.(c), and the latter event has probability going to 1 as N, T →
∞. Since ∩`{σ` injective} is an intersection of finitely many events of the form above, we
have

P(σ` injective∀`)→ 1

as N, T →∞.

A.2 Proof of Theorem 3.5

The proof closely follows the strategy used in Bonhomme and Manresa (2015). We define
the problem

Q̂(θ) = inf
γ∈Γ

Q̂(θ, γ) (A.4)

And let ĉi(θ) denote the cluster assignments that minimize the RHS of A.4. Thus, Q̂ is
the original problem from 2.4 with the cluster assignments concentrated out. The proof
of theorem 3.5 crucially relies on the following lemma

Lemma A.3. For η > 0, define Nη = {θ ∈ Θ : maxc∈C ‖θ(c)− θ0(c)‖ < η}. Then there
exists η > 0 such that for all a > 0

sup
θ∈Nη

1

N

N∑
i

1(ĉi(θ) 6= c0
i ) = oP (T−a)

Proof. First note that for each i ∈ [N ], we may write 1(ĉi(θ) 6= c0
i ) as

∑
c 6=c0i

1(ĉi(θ) = c) ≤
∑
c 6=c0i

1

(
1

T

T∑
t=1

(yit − x′itθ(c))2 ≤ 1

T

T∑
t=1

(yit − x′itθ(c0
i ))

2

)

=
∑
c 6=c0i

1

(
1

T

T∑
t=1

(x′it(θ
0(c0

i )− θ(c)) + eit)
2 ≤ 1

T

T∑
t=1

(x′it(θ
0(c0

i )− θ(c0
i )) + eit)

2

)

≤
∑
c∈C

max
c′ 6=c

1

(
1

T

T∑
t=1

(x′it(θ
0(c′)− θ(c)) + eit)

2 ≤ 1

T

T∑
t=1

(x′it(θ
0(c′)− θ(c′)) + eit)

2

)
≡
∑
c∈C

max
c′ 6=c

Zic(c
′, θ)

We can rewrite inequality inside the indicator as (for c ∈ C) as

BT
i (θ) ≡ 1

T

T∑
t=1

2eitx
′
it(θ(c

′)− θ(c)) + [x′it(θ
0(c′)− θ(c))]2 − [x′it(θ

0(c′)− θ(c′))]2 ≤ 0

16



Then we calculate

|BT
i (θ)−BT

i (θ0)| ≤

∣∣∣∣∣ 1

T

T∑
t=1

2eitx
′
it(θ(c

′)− θ0(c′) + θ0(c)− θ(c))

∣∣∣∣∣
+

∣∣∣∣∣ 1

T

T∑
t=1

[x′it(θ
0(c′)− θ(c))]2 − [x′it(θ

0(c′)− θ(c′))]2 − [x′it(θ
0(c′)− θ0(c))]2

∣∣∣∣∣ (A.5)

The second term is bounded above by∣∣∣∣∣ 1

T

T∑
t=1

[x′it(θ
0(c′)− θ(c′))]2

∣∣∣∣∣+

∣∣∣∣∣ 1

T

T∑
t=1

[x′it(θ
0(c′)− θ0(c) + θ0(c)− θ(c))]2 − [x′it(θ

0(c′)− θ0(c))]2

∣∣∣∣∣
≤

∣∣∣∣∣ 1

T

T∑
t=1

[x′it(θ
0(c′)− θ(c′))]2

∣∣∣∣∣+

∣∣∣∣∣ 1

T

T∑
t=1

[x′it(θ
0(c)− θ(c))]2

∣∣∣∣∣
+ 2

∣∣∣∣∣ 1

T

T∑
t=1

[x′it(θ
0(c′)− θ0(c))][x′it(θ

0(c)− θ(c))]

∣∣∣∣∣
Using θ ∈ Nη and applying the triangle inequality, Cauchy-Schwarz, and assumption
3.1.(a), the last expression can be bounded above by

2η2 1

T

∑
t

‖xit‖2 + 2Mη
1

T

T∑
t=1

‖xit‖2 = 2η(M + η)
1

T

T∑
t=1

‖xit‖2 ≤ 4ηM
1

T

T∑
t=1

‖xit‖2

Similarly, one can show that the first term in A.5 is bounded by 4η
∥∥∥ 1
T

∑T
t=1 eitxit

∥∥∥.
This shows that for any c 6= c′

sup
θ∈Nη

Zic(c
′, θ) ≤ sup

θ∈Nη
1(BT

i (θ0) ≤ |BT
i (θ)−BT

i (θ0)|)

≤ 1

(
BT
i (θ0) ≤ 4ηM

1

T

∑
t

‖xit‖2 + 4η

∥∥∥∥∥ 1

T

T∑
t=1

eitxit

∥∥∥∥∥
)

= 1

(
1

T

T∑
t=1

2eitx
′
it(θ

0(c′)− θ0(c)) + [x′it(θ
0(c′)− θ0(c))]2 ≤ 4ηM

1

T

∑
t

‖xit‖2 + 4η

∥∥∥∥∥ 1

T

T∑
t=1

eitxit

∥∥∥∥∥
)

≤ 1

(
1

T

T∑
t=1

[x′it(θ
0(c′)− θ0(c))]2 ≤ 4ηM

1

T

∑
t

‖xit‖2 + (4η + 2M)

∥∥∥∥∥ 1

T

T∑
t=1

eitxit

∥∥∥∥∥
)

Where Diam(Θ) ≤ M by assumption 3.1.(a). Let M ′ be the constant from 3.4.(f) Then
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taking expectations

max
i

E sup
θ∈Nη

Zic(c
′, θ)

≤ max
i

P

(
1

T

T∑
t=1

[x′it(θ
0(c′)− θ0(c))]2 ≤ 4ηMM ′ + (4η + 2M)η

)

+ max
i

P

(
1

T

∑
t

‖xit‖2 > M ′

)
+ max

i
P

(∥∥∥∥∥ 1

T

T∑
t=1

eitxit

∥∥∥∥∥ > η

)
(A.6)

To bound these terms we will use Lemma B.5 from BM, which is an application of Rio
(2017), on concentration of strongly mixing sequences. We restate the lemma here

Lemma A.4 (BM Lemma B.5). Let zt be a strongly mixing process with zero mean, with
strong mixing coefficients α(t) satisfying 3.4.(c) and tails P(|zt| > z) ≤ e1−(z/f)d2 . Then
for all a > 0 and z > 0, we have as T →∞

T a · P

(∣∣∣∣∣ 1

T

T∑
t=1

zt

∣∣∣∣∣ > z

)
≤ r(T ) = o(1)

Moreover, the function r only depends on the constants b, f, d1, d2 from assumption 3.4.(c)
and 3.4.(d).

We want to apply this result to the terms in A.6 above. Observe that if {xit} is strongly
mixing with mixing coefficients α(t) then {(x′it(θ0(c) − θ0(c′)))2} is also strongly mixing
with coefficients uniformly bounded above by α(t). This follows because continuous
transformations can only decrease the mixing coefficients. For completeness, we can show
that the tail assumptions in 3.4.(d) imply that that zt ≡ (x′it(θ(c)−θ(c′)))2−E(x′it(θ(c)−
θ(c′)))2 also satisfies the tail bound required in the lemma. Let ∆θ ≡ θ0(c)− θ0(c′) and
recall p = dim(xit), then

P((x′it(θ(c)− θ(c′)))2 − E(x′it(θ(c)− θ(c′)))2 > z) = P(∆θ′(xitx
′
it − Exitx′it)∆θ > z)

= P

(∑
j,j′

∆θj∆θj
′
(xkitx

k′

it − Exkitxk
′

it ) > z

)

≤
∑
k,k′

P
(
|(xkitxk

′

it − Exkitxk
′

it )| >
z

p2(M ′)2

)
(A.7)

Note that P(|Z| > z) ≤ e1−(z/f)d2 does not imply that C · P(|Z| > z) satisfies a
tail bound of the same form (possibly with different constants f, d2) if C > 1. How-
ever, a calculation shows that for any C > 1, there exist f ′, d′2 such for all z > 0,
min(1, Ce1−(z/f)d2 ) ≤ min(1, e1−(z/f ′)d

′
2 ), so this is not a problem. This shows that the

final term in A.7 above satisfies a tail bound of the required form.

We now apply the lemma to each of the terms in equation A.6. Choose η such that
4ηMM ′ + (4η + 2M)η < 1

3
dmin. Let git ≡ E(x′it(θ

0(c′) − θ0(c)))2 and T ′ such that
mini

1
T

∑T ′

t=1 git > (1/2)dmin, using assumption 3.4.(e). Then for T > T ′, the first term in
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A.6 is

max
i

P

(
1

T

∑
t

(
[x′it(θ

0(c′)− θ0(c))]2 − git
)
≤ 4ηMM ′ + (4η + 2M)η − 1

T

∑
t

git

)

≤ max
i

P

(∣∣∣∣∣ 1

T

∑
t

[x′it(θ
0(c′)− θ0(c))]2 − git

∣∣∣∣∣ ≥ 1

6
dmin

)
= o(T−a)

where the last line follows from applying lemma A.4 with zit = [x′it(θ
0(c′)− θ0(c))]2− git.

A similar argument using assumptions 3.4.(c), 3.4.(d), 3.4.(e) on the process {eitxit}t
shows that the second term in equation A.6 is also o(T−a), and the final term is just as
assumption 3.4.(f).

Then for ε > 0, the Markov inequality gives

P

(
T a sup

θ∈Nη

1

N

N∑
i=1

1(ĉi(θ) 6= c0
i ) > ε

)
≤ T a

1

ε
E sup
θ∈Nη

1

N

N∑
i=1

∑
c∈C

max
c′ 6=c

Zic(c
′, θ)

≤ T a
1

ε

1

N

N∑
i=1

∑
c∈C

∑
c′ 6=c

E sup
θ∈Nη

Zic(c
′, θ)

≤ T a
1

ε

1

N

N∑
i=1

|C|2 max
c 6=c′

max
i∈[N ]

E sup
θ∈Nη

Zic(c
′, θ) = o(1)

This completes the proof of the lemma.

In what follows, we let η satisfy the conditions posited in A.3. Recall the sample risk with
oracle cluster membership Q̃ ≡ Q̂(θ, γ0). We show that for every a > 0, supθ∈Nη(Q̂ −
Q̃)(θ) = oP (T−a). For any θ ∈ Nη, we can write

|(Q̂− Q̃)(θ)| =

∣∣∣∣∣ 1

NT

∑
i,t

[yit − x′itθ(ĉi(θ))]2 − [yit − x′itθ(c0
i )]

2

∣∣∣∣∣ ≤
∣∣∣∣∣ 1

NT

∑
i,t

2eitx
′
it(θ(c

0
i )− θ(ĉi(θ)))

∣∣∣∣∣
+

∣∣∣∣∣ 1

NT

∑
i,t

[x′it(θ
0(c0

i )− θ(c0
i ))]

2 − [x′it(θ
0(c0

i )− θ(ĉi(θ)))]2
∣∣∣∣∣ (A.8)
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The first term on the right hand side is bounded above by

1

N

∑
i

∣∣∣∣(θ(c0
i )− θ(ĉi(θ)))′

1

T

∑
t

2eitxit1(ĉi(θ) 6= c0
i )

∣∣∣∣ ≤ 2M

N

∑
i

1(ĉi(θ) 6= c0
i )

∥∥∥∥∥ 1

T

∑
t

eitxit

∥∥∥∥∥
≤

(
1

N

∑
i

1(ĉi(θ) 6= c0
i )

)1/2
 1

N

∑
i

∥∥∥∥∥ 1

T

∑
t

eitxit

∥∥∥∥∥
2
1/2

= oP (T−(2a)/2)

(
1

NT 2

∑
i

∑
t,s

eiteisx
′
itxis

)1/2

= oP (T−(2a)/2)oP (1) = oP (T−a)

where the last line follows by lemma A.3 and assumption 3.1.(b). The second term in
equation A.8 can be expanded as∣∣∣∣∣ 1

NT

∑
i,t

[x′it(θ
0(c0

i )− θ(ĉi(θ)) + θ(ĉi(θ))− θ(c0
i ))]

2 − [x′it(θ
0(c0

i )− θ(ĉi(θ)))]2
∣∣∣∣∣

≤

∣∣∣∣∣ 1

NT

∑
i,t

2x′it(θ
0(c0

i )− θ(ĉi(θ)))x′it(θ(ĉi(θ))− θ(c0
i ))

∣∣∣∣∣+

∣∣∣∣∣ 1

NT

∑
i,t

(x′it(θ(ĉi(θ))− θ(c0
i )))

2

∣∣∣∣∣
For instance, the second term can be rewritten∣∣∣∣ 1

N

∑
i

1

T

∑
t

(x′it(θ(ĉi(θ))− θ(c0
i )))

21(ĉi(θ) 6= c0
i )

∣∣∣∣ ≤
∣∣∣∣∣M2

N

∑
i

1(ĉi(θ) 6= c0
i )

1

T

∑
t

‖xit‖2

∣∣∣∣∣
≤M2

(
1

N

∑
i

1(ĉi(θ) 6= c0
i )

) 1
2

 1

N

∑
i

(
1

T

∑
t

‖xit‖2

)2
 1

2

≤ oP (T−a)

(A.9)

where the last inequality uses lemma A.3 and assumption 3.4.(a). It follows that

sup
θ∈Nη
|(Q̂− Q̃)(θ)| = oP (T−a) (A.10)

We claim that θ̃ − θ0 = oP (1). Note that since Q̃(θ) = Q̂(θ, γ0), it suffices to check
that the assumptions in 3.1 hold for Γ′ ≡ {γ0}. The only thing we need to check is
assumption 3.1.(d), which is clear since {γ0} ⊂ Γ implies infc′,γ∈{γ0}maxc ρ(c, c′, γ) ≥
infc′,γ∈Γ maxc ρ(c, c′, γ) ≥ δ − oP (1) as N, T → ∞ by assumption 3.1.(d). This shows
θ̃ − θ0 = oP (1).

Next, we will show that for any a > 0

Q̃(θ̂)− Q̃(θ̃) = oP (T−a) (A.11)
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Let a > 0 and ε > 0. Define the event ET ≡ {T a(Q̃(θ̂)− Q̃(θ̃)) > ε}.

P(ET ) ≤ P(ET ∩ {θ̂, θ̃ ∈ Nη}) + P(θ̂ 6∈ Nη or θ̃ 6∈ Nη) = P(ET ∩ {θ̂, θ̃ ∈ Nη}) + o(1)

The final equality follows from a union bound and consistency of θ̂ and θ̃. On the event
ET ∩ {θ̂, θ̃ ∈ Nη}, we have

0 ≤ Q̃(θ̂)− Q̃(θ̃) = (Q̃(θ̂)− Q̂(θ̂)) + (Q̂(θ̂)− Q̂(θ̃)) + (Q̂(θ̃)− Q̃(θ̃))

≤ 2 sup
θ∈Nη
|(Q̃− Q̂)(θ)|

where we used that (Q̂(θ̂)− Q̂(θ̃)) ≤ 0 by the definition of θ̂. Then using the inequality
above, apparently

P(ET ) ≤ P

(
T a · 2 sup

θ∈Nη
|(Q̃− Q̂)(θ)| > ε

)
+ o(1) = o(1)

by equation A.10. This completes the proof of A.11. We now show a curvature lower
bound for Q̃. For every 1 ≤ ` ≤ G and each x ∈ [k`], θ̃ ∈ argminθ∈Θ Q̃(θ) implies

0 = ∇θ`xQ̃(θ̃) =
2

NT

∑
i:c0i`=x

T∑
t=1

(yit − x′itθ̃(c0
i ))x

`
it (A.12)

Define ẽit ≡ (yit − x′itθ̃(c0
i ) and compute

Q̃(θ̂)− Q̃(θ̃) =
1

NT

∑
i,t

(yit − x′itθ̂(c0
i ))

2 − 1

NT

∑
i,t

(yit − x′itθ̃(c0
i ))

2

=
1

NT

∑
i,t

(yit − x′itθ̃(c0
i ) + x′it[θ̃(c

0
i )− θ̂(c0

i )])
2 − 1

NT

∑
i,t

(yit − x′itθ̃(c0
i ))

2

=
1

NT

∑
i,t

(x′it[θ̃(c
0
i )− θ̂(c0

i )])
2 +

1

NT

∑
i,t

ẽitx
′
it[θ̃(c

0
i )− θ̂(c0

i )]

We claim that the second term is identically zero. Define a map5 F : Θ − Θ → R by
F (θ) =

∑
i,t ẽitx

′
itθ(c

0
i ). Note that for any 1 ≤ ` ≤ G, we can write

F (θ) =
N∑
i=1

T∑
t=1

ẽitx
′
itθ(c

0
i ) =

T∑
t=1

∑
x∈[k`]

∑
i:c0i`=x

ẽitx
′
itθ(c

0
i ) =

T∑
t=1

∑
x∈[k`]

∑
i:c0i`=x

∑
˜̀

ẽit〈x
˜̀

it, θ
˜̀
(c0
i )〉

=
T∑
t=1

∑
x∈[k`]

∑
i:c0i`=x

∑
˜̀6=`

ẽit〈x
˜̀

it, θ
˜̀
(c0
i )〉+

∑
x∈[k`]

∑
i:c0i`=x

T∑
t=1

ẽit〈x`it, θ`(c0
i )〉

=
T∑
t=1

∑
x∈[k`]

∑
i:c0i`=x

∑
˜̀6=`

ẽit〈x
˜̀

it, θ
˜̀
(c0
i )〉

where we have used that
∑

i:c0i`=x

∑T
t=1 ẽit(x

`
it)
′θ`(c0

i ) = 0 for each x by the first order

5For S1 and S2 subsets of the same vector space, we define S1 − S2 ≡ {s1 − s2 : si ∈ Si, i = 1, 2}.
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condition A.12. Since the last expression doesn’t involve θ`, we conclude that for any
θ ∈ Dom(F ), the equality F (θ`, θ−`) = F (0, θ−`) holds. Applying this fact inductively,
we find that F = F (0) = 0 identically. In particular, F (θ̃ − θ̂) = 0, which is what we
needed to show. Then similar to the proof of 3.3, we calculate

Q̃(θ̂)− Q̃(θ̃) =
1

NT

∑
i,t

(x′it[θ̃(c
0
i )− θ̂(c0

i )])
2

=
∑
c∈C

(θ̃(c)− θ̂(c))′
(

1

NT

∑
i,t

1(c0
i = c)xitx

′
it

)′
(θ̃(c)− θ̂(c))

≥
∑
c∈C

‖θ̃(c)− θ̂(c)‖2λmin(M c
NT ) ≥

∑
c∈C

‖θ̃(c)− θ̂(c)‖2 min
c′∈C

λmin(M c′

NT )

Define WNT ≡ minc′∈C λmin(M c′
NT ), so that W c

NT ≥ 0 by positive semi-definiteness of
M c

NT for all N, T, c. Also denote ENT = {WNT > ρ/2}. Then by assumption 3.4.(b),
P(ENT ) = o(1). We have∑
c∈C

‖θ̃(c)− θ̂(c)‖2 min
c′∈C

λmin(M c′

NT ) =
∑
c∈C

‖θ̃(c)− θ̂(c)‖2(ρ/2 + (WNT − ρ/2))

≥
∑
c∈C

‖θ̃(c)− θ̂(c)‖2(ρ/2 + (WNT − ρ/2)1(WNT < ρ/2))

=
∑
c∈C

‖θ̃(c)− θ̂(c)‖2ρ/2 + oP (T−a)

In the last line we used the compactness assumption 3.1.(a), the fact that |WNT −ρ/2| ≤
ρ/2 on Ec

NT , and T a1(Ec
NT ) = oP (1) for any a > 0 since P(ENT ) → 1 by assumption

3.4.(b). Combining this with equation A.11 shows that supc∈C ‖θ̃(c) − θ̂(c)‖ = oP (T−a),
which completes the proof of part 3.3 of the theorem.

For the second part of the theorem 3.4 on cluster assignment, note that for η satisfying
the conditions in lemma A.3, using the bounds developed in the proof of the lemma we
find that

P(∃i : ĉi 6= c0
i ) ≤ P(∃i : ∃θ ∈ Nη : ĉi(θ) 6= c0

i and θ̂ ∈ Nη) + P(θ̂ 6∈ Nη)

≤
∑
i

P(∃θ ∈ Nη : ĉi(θ) 6= c0
i ) + o(1) =

∑
i

E[ sup
θ∈Nη

1(ĉi(θ) 6= c0
i )] + o(1)

≤
∑
i

E sup
θ∈Nη

∑
c∈C

∑
c′ 6=c

Zic(c
′, θ) + o(1) ≤

∑
i

∑
c∈C

∑
c′ 6=c

E sup
θ∈Nη

Zic(c
′, θ) + o(1)

= o(NT−a) + o(1)

This completes the proof of the theorem.

A.3 Proof of Theorem 3.10

In this section, we prove consistency of model selection for the Cp criterion defined in
the main text. The assumptions of theorem 3.10 (stated in assumption 3.9) are imposed
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everywhere in this section. First we need some additional definitions. Let Θk =
∏

`Rd`×k`

be the parameter space for a model with k = (k1, . . . , kB) clusters. Let Ck =
∏

i[ki] and
Γk = [ [N ]→ Ck ] denote the set of possible cluster labels and cluster labelings of the
cross-sectional units, where we may have k 6= k0, the true number of clusters in each
group.

Define Q̂0 = Q̂(θ0, γ0) = 1
NT

∑
i,t e

2
it to be the sample risk evaluated at the true model.

We begin with the following lemma on the sample risk of different models.

Lemma A.5. The following hold

(i) If k = k0, then Q̂(k)− Q̂0 = Op(
1
NT

)

(ii) If k > k0, then Q̂(k)− Q̂0 = op(T
−1+3ε)

(iii) If k is such that ki < k0
i for some i, then Q̂(k)− Q̂0 = Ω(1) + op(1)

Proof of (i) and (iii). Statement (i) follows from lemma B.2 in the supplemental ap-
pendix. We note that if k = k0, then θ̂ satisfies the conditions of lemma B.2 by our
inference result theorem 3.8 and lemma A.3 above on the convergence of average classi-
fication risk.

For the proof of part (iii), first define ∆θ̂ki = θ0(c0
i )− θ̂k(ĉk) and recall that

Q̂(k)− Q̂0 =
1

NT

∑
i,t

(x′it∆θ̂
k
i )

2 +
1

NT

∑
i,t

eitx
′
it∆θ̂

k
i (A.13)

The expression 1
NT

∑
i,t eitx

′
it∆θ̂i was already shown to be op(1) uniformly over ∆θ̂i ∈ Θ in

equation A.2 in the consistency proof. Similarly, the first term was analyzed in equation
A.3. The exact same argument as before shows that for arbitrary (θk, γk) ∈ Θk × Γk

1

NT

∑
i,t

(x′it(θ
0(c0

i )− θk(cki ))2

=
1

NT

∑
i,t

∑
c∈Ck

∑
c′∈Ck0

(θk(c)− θ0(c′))′xitx
′
it(θ

k(c)− θ0(c′))1(c0
i = c′)1(cki = c)

=
∑
c∈Ck

∑
c′∈Ck0

(θk(c)− θ0(c′))′

(
1

NT

∑
i,t

xitx
′
it1(c0

i = c′)1(cki = c)

)
(θk(c)− θ0(c′))

≥
∑
c∈Ck

∑
c′∈Ck0

‖θk(c)− θ0(c′)‖2ρ(c, c′, γ)

≥
∑
c∈Ck

∑
c′∈Ck0

ρ(c, c′, γ) max
x∈Ck
‖θk(x)− θ0(c′)‖2

≥
∑
c′∈Ck0

min
c̃∈Ck0

min
γk∈Γk

max
c∈Ck

ρ(c, c̃, γ) min
x∈Ck
‖θk(x)− θ0(c′)‖2

≥ (δ − oP (1))
∑
c′∈Ck0

min
x∈Ck
‖θk(x)− θ0(c′)‖2

We claim that maxc′∈Ck0 minx∈Ck ‖θ̂k(x) − θ0(c′)‖2 = Ω(1). Let 1 ≤ ` ≤ B be such that
k` < k0

` and define σ(j) = argmini ‖θ̂k`i − θ0
`j‖. Since k` < k0

` , by the pigeonhole principle
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σ(j) = σ(i) for some i, j ∈ [k0
` ]. Then by cluster separation (assumption 3.1)

0 < dmin ≤ ‖θ0
`j − θ0

`i‖ ≤ ‖θ0
`j − θ̂k`σ(j)‖+ ‖θ̂k`σ(j) − θ̂k`σ(i)‖+ ‖θ̂k`σ(i) − θ0

`i‖

Since the middle term on the RHS is 0, max(‖θ0
`j − θ̂k`σ(j)‖, ‖θ0

`i − θ̂k`σ(i)‖) > dmin/2.
Without loss suppose the max is achieved at i. Then for any c′ with c′` = i, we have
minx∈Ck ‖θ̂k(x)−θ0(c′)‖2 ≥ (dmin/2)2. Plugging in (θ̂k, γ̂k) into our uniform bound above,
we find

1

NT

∑
i,t

(x′it(θ
0(c0

i )− θ̂k(ĉki ))2 ≥ (δ − oP (1))
∑
c′∈Ck0

min
x∈Ck
‖θ̂k(x)− θ0(c′)‖2 ≥ δ(dmin/2)2 − op(1)

where we have used compactness of Θ in the final line. Then we have shown that Q̂(k)−
Q̂0 ≥ δ(dmin/2)2 + op(1), which completes the proof of (ii).

For the proof of part (i), we need to develop some extra machinery. In this section, we
denote m = (θ, γ) ∈ Θ × Γ, and let mk and mk0 be parameter, cluster label pairs in
Θk × Γk and Θk0 × Γk0 respectively. We denote m̂k = (θ̂k, γ̂k) and mk0 = (θ0, γ0). Define

d(m,m′) ≡ 1

N

∑
i

(θ(ci)− θ′(c′i))2

The following key lemma forms the backbone of our inductive approach for establishing
(near)

√
T -consistency for over-specified estimators.

Lemma A.6. Let k ≥ k0 and bT ≡ T−
1
2

+ε. Then for any sequence aT = o(1), we have

d(m̂k,mk0) = Op(aT ) =⇒ d(m̂k,mk0) = op(a
1/2
T bT ) (A.14)

Proof. In what follows, let (θ̂k, γ̂k) = argminθ∈Θk,γ∈Γk Q(θ, γ) and again let ∆θ̂ki = (θ̂k(ĉki )−
θ0(c0

i )). With Q̃ defined as in our consistency proof in equation A.1, we have

|Q̃(θ̂k, γ̂k)− Q̂(θ̂k, γ̂k)| =

∣∣∣∣∣−2
1

N

∑
i

〈
∆θ̂ki ,

(
1

T

∑
t

eitxit

)〉∣∣∣∣∣ . 1

N

∑
i

‖∆θ̂ki ‖

∥∥∥∥∥ 1

T

∑
t

eitxit

∥∥∥∥∥
≤

(
1

N

∑
i

‖∆θ̂ki ‖2

)1/2
 1

N

∑
i

∥∥∥∥∥ 1

T

∑
t

eitxit

∥∥∥∥∥
2
1/2

≤

(
1

N

∑
i

‖∆θ̂ki ‖2

)1/2(
sup
i∈[N ]

∥∥∥∥∥ 1

T

∑
t

eitxit

∥∥∥∥∥
)

= Op(a
1/2
T )op(bT ) = op(a

1/2
T bT )

The second to last equality holds by our assumption and applying lemma B.3. Now we
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reason

Q̃(θ̂k, γ̂k) = Q̂(θ̂k, γ̂k) + [Q̃(θ̂k, γ̂k)− Q̂(θ̂k, γ̂k)] ≤ Q̂(θ̂k, γ̂k) + |Q̃(θ̂k, γ̂k)− Q̂(θ̂k, γ̂k)|
= Q̂(θ̂k, γ̂k) + op(a

1/2
T bT )

≤ Q̂(θ0, γ0) + op(a
1/2
T bT ) = Q̃(θ0, γ0) + op(a

1/2
T bT )

The inequality holds because k ≥ k0 =⇒ (θ0, γ0) is in the parameter space of the
misspecified estimator.6 This shows that 0 ≤ Q̃(θ̂k, γ̂k) − Q̃(θ0, γ0) ≤ oP (a

1/2
T bT ). Then

by above we have

op(a
1/2
T bT ) ≥ Q̃(θ̂k, γ̂k)− Q̃(θ0, γ0) =

1

NT

∑
i,t

(x′it∆θ̂
k
i )

2 =
1

N

∑
i

(∆θ̂ki )
′

(
1

T

∑
t

xitx
′
it

)
∆θ̂ki

=
1

N

∑
i

(∆θ̂ki )
′

(
1

T

∑
t

E[xitx
′
it]

)
∆θ̂ki +

1

N

∑
i

(∆θ̂ki )
′

(
1

T

∑
t

(xitx
′
it − E[xitx

′
it])

)
∆θ̂ki

≥ 1

N

∑
i

(∆θ̂ki )
′

(
1

T

∑
t

E[xitx
′
it]

)
∆θ̂ki −

∣∣∣∣∣ 1

N

∑
i

(∆θ̂ki )
′

(
1

T

∑
t

(xitx
′
it − E[xitx

′
it])

)
∆θ̂ki

∣∣∣∣∣
Now again applying the triangle inequality, Cauchy-Schwarz, and the definition of an
operator norm we have∣∣∣∣∣ 1

N

∑
i

(∆θ̂ki )
′

(
1

T

∑
t

(xitx
′
it − E[xitx

′
it])

)
∆θ̂ki

∣∣∣∣∣ ≤ 1

N

∑
i

‖∆θ̂ki ‖2

∥∥∥∥∥ 1

T

∑
t

(xitx
′
it − E[xitx

′
it])

∥∥∥∥∥
≤ 1

N

∑
i

‖∆θ̂ki ‖2 sup
j∈[N ]

∥∥∥∥∥ 1

T

∑
t

(xjtx
′
jt − E[xjtx

′
jt])

∥∥∥∥∥ = Op(aT )op(bT ) = op(aT · bT )

where the last equality uses lemma B.3. Then continuing the chain of inequalities above
we have

op(a
1/2
T bT ) ≥ Q̃(θ̂k, γ̂k)− Q̃(θ0, γ0) ≥ 1

N

∑
i

‖∆θ̂ki ‖2 min
j∈[N ]

λmin

(
1

T

∑
t

E[xjtx
′
jt]

)
− op(aT · bT )

By assumption aT = o(1), so collecting the op terms on the LHS and defining λNT to be
the eigenvalue term on the RHS, we have

op(a
1/2
T bT ) ≥ 1

N

∑
i

‖∆θ̂ki ‖2λNT ≥
1

N

∑
i

‖∆θ̂ki ‖2(λ/2 + (λNT − λ/2)1(λNT ≤ λ/2))

≥ λ/2
1

N

∑
i

‖∆θ̂ki ‖2 −

∣∣∣∣∣ 1

N

∑
i

‖∆θ̂ki ‖2(λNT − λ/2)1(λNT ≤ λ/2))

∣∣∣∣∣
≥ λ/2

1

N

∑
i

‖∆θ̂ki ‖2 − (λ/2)M21(λNT ≤ λ/2)) ≥ λ/2
1

N

∑
i

‖∆θ̂ki ‖2 − o(a1/2
T bT )

The second to last inequality follows by assumption 3.9.(b) and compactness. The final
6Specifically, there exist θk ∈ Θk and γk ∈ Γk such that the N × p matrix with ith row θ0(γ0(i)) =

θk(γk(i)) for all i ∈ [N ]
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inequality holds because indicator functions that converge to 0 do so at arbitrary rate.
This completes the proof of the lemma.

Corollary A.7. For any k ≥ k0

d(m̂k,mk0) = op(T
−1+3ε) (A.15)

Q̂(k)− Q̂0 = op(T
−1+3ε) (A.16)

Proof. We claim that for all r ≥ 0, we have d(m̂k,mk0) = Op (T cr), where cr = −(1 −
1
2r

) + ε
∑r

j=0 2−j. The proof is by induction. The base case c0 = ε is immediate since
d(m̂k,mk0) = Op(1) by compactness of Θ. Assume the statement is true for all 0 ≤ m ≤ r,
then by lemma A.6

d(m̂k,mk0) = Op(T
cr) =⇒ d(m̂k,mk0) = op

(
T cr/2 · T−1/2+ε

)
and cr/2− 1/2 + ε = −(1/2− 1

2r+1 ) + ε
∑r

j=0 2−j−1− 1/2 + ε = −(1− 1
2r+1 ) + ε

∑r+1
j=0 2−j,

which completes the induction. In particular, the first statement of the corollary holds
as soon as 2−r ≤ ε. For the second statement of the corollary, recall that

Q̂(k)− Q̂0 =
1

NT

∑
i,t

(x′it∆θ̂
k
i )

2 +
1

NT

∑
i,t

eitx
′
it∆θ̂

k
i

The proof of lemma A.6, showed that d(m̂k,mk0) = op(aT ) =⇒ 1
NT

∑
i,t eitx

′
it∆θ̂

k
i =

op(a
1/2
T bT ). Under the same conditions

1

NT

∑
i,t

(x′it∆θ̂
k
i )

2 ≤ 1

NT

∑
i,t

‖xit‖2‖∆θ̂ki ‖2 ≤ 1

N

∑
i

‖∆θ̂ki ‖2 sup
j∈[N ]

1

T

∑
t

‖xjt‖2

≤ op(aT )Op(1) = op(aT )

That supi∈[N ]
1
T

∑
t ‖xit‖2 is Op(1) can easily be shown by a union bound in combination

with assumption 3.4.(f) (as long as NT−a = o(1) for some a > 0). Putting this together,
we get that Q̂(k)− Q̂0 = op(T

−1+3ε) + op(T
−1/2+3ε/2−1/2+ε) = op(T

−1+3ε). This completes
the proof of the corollary and of the first part of lemma A.5.

Proposition A.8. For any k ≥ k0

∀c ∈ Ck0 min
x∈Ck
‖θ̂k(x)− θ0(c)‖2 = op(T

−1+3ε) (A.17)

Proof. Applying corollary A.7, we find that

op(T
−1+3ε) ≥ Q̃(θ̂k, γ̂k)− Q̃(θ0, γ0) =

1

NT

∑
i,t

(x′it(θ
0(c0

i )− θ̂k(ĉi
k))2

≥ min
c̃∈Ck0

min
γk∈Γk

max
c∈Ck

ρ(c, c̃, γ) max
c′∈Ck0

min
x∈Ck
‖θk(x)− θ0(c′)‖2

= max
c′∈Ck0

min
x∈Ck
‖θk(x)− θ0(c′)‖2(δ/2 + (ρkNT − δ/2)1(ρkNT − δ/2 ≤ 0))

= (δ/2) · max
c′∈Ck0

min
x∈Ck
‖θk(x)− θ0(c′)‖2 − op(T−1+3ε)

=⇒ max
c∈Ck0

min
x∈Ck
‖θ̂k(x)− θ0(c)‖2 = op(T

−1+3ε)
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The final equality again follows by compactness of Θ, positivity of ρkNT , and because
indicator functions that converge to 0 (in probability) do so at arbitrary rates. Since the
square norm above is additively separable in the norms of each block of the covariate
vector, for any c, c′ ∈ Ck0 with c` = c′`, we must have (argminx∈Ck ‖θ̂k(x) − θ0(c)‖2)` =

(argminx∈Ck ‖θ̂k(x) − θ0(c′)‖2)`. This shows that setting σ`(a) = (argminx∈Ck ‖θ̂k(x) −
θ0(c)‖2)` for any c ∈ Ck0 with c` = a is well-defined.

The following proposition is our analogue of Theorem 3.2 in Liu et al. (2019). We use
a recursive argument to give a faster rate for the worst case cross-sectional unit error in
our setting.

Proposition A.9. For any k ≥ k0

sup
i∈[N ]

‖θ̂k(ĉki )− θ0(c0
i )‖ = op(T

− 1
2

+2ε) (A.18)

Proof. Define Q̂i(θ, ci) = 1
T

∑
t(yit−x′itθ(ci))2 and Q̃i(θ, ci) = 1

T

∑
t(x
′
it(θ

0(c0
i )−θ(ci)))2 +

1
T

∑
t e

2
it. Recall the random cluster mapping σ : Ck0 → Ck defined above. Then since ĉi

is the optimal cluster choice given estimated parameters θ̂,

Q̂i(θ̂
k, ĉki ) ≤ Q̂i(θ̂

k, σ(c0
i )) =⇒ Q̃i(θ̂

k, ĉki ) ≤ Q̃i(θ̂
k, σ(c0

i ))

+ (Q̂i − Q̃i)(θ̂
k, σ(c0

i )) + (Q̃i − Q̂i)(θ̂
k, ĉki )

≤ Q̃i(θ̂
k, σ(c0

i )) + |Q̂i − Q̃i|(θ̂k, σ(c0
i )) + |Q̃i − Q̂i|(θ̂k, ĉki )

The second term above has

sup
i
|Q̂i − Q̃i|(θ̂k, σ(c0

i )) = sup
i

∣∣∣∣∣(θ0(c0
i )− θ̂k(σ(c0

i )))
′ 1

T

∑
t

eitxit

∣∣∣∣∣
≤ max

c∈Ck0
min
x∈Ck
‖θ̂k(x)− θ0(c)‖ sup

i∈[N ]

∥∥∥∥∥ 1

T

∑
t

eitxit

∥∥∥∥∥ ≤ op(T
−1+ 5

2
ε)

where we apply proposition A.8 and lemma B.3. Similarly, the third term is

sup
i
|Q̃i − Q̂i|(θ̂k, ĉki ) ≤ sup

i∈[N ]

‖θ0(c0
i )− θ̂k(ĉki )‖ sup

j∈[N ]

∥∥∥∥∥ 1

T

∑
t

ejtxjt

∥∥∥∥∥
= Op

(
sup
i∈[N ]

‖θ0(c0
i )− θ̂k(ĉki )‖

)
op(T

− 1
2

+ε)

Moreover, we reason

sup
i∈[N ]

|Q̃i(θ̂
k, σ(c0

i ))− Q̃i(θ
0, c0

i )| = sup
i∈[N ]

1

T

∑
t

(x′it(θ
0(c0

i )− θ̂k(σ(c0
i ))))

2

≤ sup
i∈[N ]

1

T

∑
t

‖xit‖2‖∆θ̂k(c0
i , σ(c0

i ))‖2 ≤ sup
i∈[N ]

1

T

∑
t

‖xit‖2 sup
j∈[N ]

‖∆θ̂k(c0
j , σ(c0

j))‖2

≤ sup
i∈[N ]

1

T

∑
t

‖xit‖2 max
c∈Ck0

min
x∈Ck
‖θ̂k(x)− θ0(c)‖2 = Op(1)op(T

−1+3ε)
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That supi∈[N ]
1
T

∑
t ‖xit‖2 is Op(1) can easily be shown by a union bound in combination

with assumption 3.4.(f) (as long as NT−a = o(1) for some a > 0). Putting this all
together, we have

0 ≤ sup
i∈[N ]

[Q̃i(θ̂
k, ĉki )− Q̃i(θ

0, c0
i )]

≤ sup
i∈[N ]

[Q̃i(θ̂
k, σ(c0

i )) + sup
j∈[N ]

[Q̃i(θ̂
k, ĉkj )− Q̃j(θ̂

k, σ(c0
j))]− Q̃i(θ

0, c0
i )]

= op(T
−1+3ε) +Op

(
sup
i∈[N ]

‖θ0(c0
i )− θ̂k(ĉki )‖

)
op(T

− 1
2

+ε)

where the first op(1) is from work above and the second by lemma B.3. Now

sup
i∈[N ]

|Q̃i(θ̂
k, ĉki )− Q̃i(θ

0, c0
i )| = sup

i∈[N ]

|∆θ̂ki (ĉki , c0
i )
′ 1

T

∑
t

xitx
′
it∆θ̂

k
i (ĉ

k
i , c

0
i )|

≥ sup
i∈[N ]

|∆θ̂ki (ĉki , c0
i )
′ 1

T

∑
t

E[xitx
′
it]∆θ̂

k
i (ĉ

k
i , c

0
i )|

− sup
i∈[N ]

|∆θ̂ki (ĉki , c0
i )
′ 1

T

∑
t

(xitx
′
it − E[xitx

′
it])∆θ̂

k
i (ĉ

k
i , c

0
i )|

≥ sup
i∈[N ]

‖∆θ̂ki (ĉki , c0
i )‖2 inf

j∈[N ]
λmin

(
1

T

∑
t

E[xjtx
′
jt]

)
− CNT

where similar arguments show that

CNT = Op

(
sup
i∈[N ]

‖∆θ̂ki (ĉki , c0
i )‖2

)
op(T

− 1
2

+ε)

The indicator function trick used in the proof of lemma A.6 above then shows that

sup
i∈[N ]

‖∆θ̂ki (ĉki , c0
i )‖2 = Op

(
sup
i∈[N ]

‖∆θ̂ki (ĉki , c0
i )‖2

)
op(T

− 1
2

+ε) + op(T
−1+3ε)

+Op

(
sup
i∈[N ]

‖∆θ̂ki (ĉki , c0
i )‖

)
op(T

− 1
2

+ε) (A.19)

The remainder of the proof follows by induction. For the base case, using compactness in
the expression above shows that supi∈[N ] ‖∆θ̂ki (ĉki , c0

i )‖2 = op(T
− 1

2
+ε). The inductive step

follows from the recursion in equation A.19. This completes the proof.

A.3.1 Bias

We also need the following lemma on the order of our proposed bias correction

Lemma A.10. The following are true

(i) If k ≥ k0, then b̂(k) = Op(
1
NT

)

(ii) If k is such that ki < k0
i for some i, then b̂(k) = op(1)
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Proof. TBD, current Cp criterion uses non bias-corrected sample risk.

We are now ready to complete the proof of model selection consistency using our Cp
criterion. For completeness, suppose that we choose k̂ uniformly (independently) at
random in the case of a tie. Denote k > k′ if ki ≥ k′i for all i and strictly for some index.

Proof of Theorem 3.10. We reason that

P(k̂ 6= k0) ≤ P(∃k 6= k0 s.t. Cp(k) ≤ Cp(k
0))

≤
∑

k:∃ki<k0i
k≤kmax

P(Cp(k) ≤ Cp(k
0)) +

∑
k>k0
k≤kmax

P(Cp(k) ≤ Cp(k
0))

For k in the first summation (with ki < k0
i for some i), we have

P(Cp(k) ≤ Cp(k
0)) = P

(
Q̂(k)− Q̂(k0) + b̂(k)− b̂(k0) ≤

∑
i

(k0
i − ki)f(N, T )

)

= P

(
[Q̂(k)− Q̂0]− [Q̂(k0)− Q̂0] + b̂(k)− b̂(k0) ≤

∑
i

(k0
i − ki)f(N, T )

)
= P (Ω(1) + op(1) +Op(1/NT ) + op(1) ≤ o(1)) = P(Ω(1) ≤ op(1))→ 0

Where we have applied lemmas A.5 and A.10 in the final line. Similarly, for k in the
second summation (with k ≥ k0 and kj > k0

j for some j)

P(Cp(k) ≤ Cp(k
0)) = P

(
[Q̂(k)− Q̂0]− [Q̂(k0)− Q̂0] + b̂(k)− b̂(k0) ≤

∑
i

(k0
i − ki)f(N, T )

)
≤ P

(
2 ·Op(1/NT ) + op(T

−1+3ε) ≤ −f(N, T )
)

= P
(
Op

(
1

NT 3ε

)
+ op(1) ≤ −T 1−3εf(N, T )

)
→ 0

since T 1−3εf(N, T ) → ∞ by assumption. Because each of the sums above is finite, this
shows that P(k̂ 6= k0) = o(1), which completes the proof.

A.4 Variance Estimator Consistency

In this section, we sketch how to adapt Hansen (2007)’s proof of the consistency of the
Arellano (1987) HAC variance estimator to the estimator proposed in equation 3.11 under
asymptotics where N, T → ∞ jointly. To use Hansen’s proof, we impose the following
assumptions, as well as compactness 3.1.(a) and mixing conditions 3.4.(c). Throughout,
we assume that 1 ∈ xit.

Assumption A.11. Impose the following assumptions

(a) (eit, xit, c
0
i ) are cross-sectionally independent

(b) There exists c <∞ and δ > 0 such that for all i, t, and components xitq of xit, we
have E|xitq|4+δ < c and E|eit|4+δ < c
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First note that for any a ∈ [k`] and b ∈ [ks] and ε > 0 and δ > 0, we have

P(‖Ω̂`a,sb(ĉ)− Ω`a,sb‖ > ε) ≤ P(‖Ω̂`a,sb(c
0)− Ω`a,sb‖ > ε) + P

(
∃i ∈ [N ] s.t. ĉi 6= c0

i

)
= P(‖Ω̂`a,sb(c

0)− Ω`a,sb‖ > ε) + o(1) +O(NT−δ) (A.20)

So for consistency it suffices to focus on the estimator Ω̂(c0) defined by 3.11 evaluated at
the true cluster membership matrix.

Let Zi = 1(c0
i` = a)1(c0

is = b) ∈ {0, 1}. Define ∆θ̂(c) ≡ θ0(c) − θ̂(c) and ∆θ̂i ≡ ∆θ̂(c0
i ).

Using this notation, we have

Ω̂`a,sb =
1

NT

∑
i,t,t′

êitêit′xit`x
′
it′sZi

=
1

NT

∑
i,t,t′

(eiteit′ + eitx
′
it′∆θ̂i + x′it∆θ̂ieit′ + ∆θ̂′ixit′x

′
it∆θ̂i)xit`x

′
it′sZi

We focus on just one term in the d`× ds matrix xit`x′it′s, which we denote xitpxit′q. Then,
for instance, the second term in the preceding expansion can be written as

1

NT

∑
i

Zi

(∑
t

eitxitp

)(∑
t′

xit′xit′q

)′
∆θ̂i

=
1

NT

∑
i

Zi
∑
c∈C

1(c0
i = c)

(∑
t

eitxitp

)(∑
t′

xit′xit′q

)′
∆θ̂i

=
1

NT

∑
c∈C

∑
i

Zi1(c0
i = c)

(∑
t

eitxitp

)(∑
t′

xit′xit′q

)′
∆θ̂(c)

Note that C is finite. Each term inside the sum
∑

c∈C above

1

NT

∑
i

Zi1(c0
i = c)

(∑
t

eitxitp

)(∑
t′

xit′xit′q

)′
∆θ̂(c)

has the form of equation (O.2) in the supplementary appendix of Hansen (2007), up to
the extra term Zi1(c0

i = c). However, since E‖Zi1(c0
i = c)v‖ ≤ E‖v‖ for any vector

v, these extra terms preserve the moment bounds needed for application of the Markov
LLN (Hansen, Lemma A.2).

To show the moment bound E‖(
∑

t eitxitp)(
∑′

t xit′xit′q)‖1+δ needed for the Markov LLN,
Hansen’s Theorem 3 and Lemma A.4 assume decay rates on the mixing coefficients
α(t) of (xit, eit). Our exponential mixing assumption 3.4.(c) is already sufficient for
the polynomial rate used in his proof. Thus, Hansen’s results apply to show that

1
NT

∑
i,t,t′ eitx

′
it′∆θ̂ixit`x

′
it′s = Op(

1√
n
). The arguments from Hansen’s proof similarly show

that under the conditions in assumption A.11 the third term in equation A.20 is Op(
1√
n
),

the fourth term is Op(
1
n
), and the first term converges to the limit postulated in 3.7.(a).

30



B Supplementary Lemmas
In the following lemma, we show that maxi Var(x′i∆θ) = o(1), needed for the proof of
C.4. The proof is an application of methods developed in Rio (1993). Also see Rio (2017)
for a more complete exposition of covariance inequalities for strongly-mixing processes.

Lemma B.1. Under the fixed effects assumptions C.3, maxi Var(x′i∆θ)→ 0 as T →∞.

Proof. For a sequence of mixing coefficients {α(t)}t≥0 define α−1(u) =
∑

t≥0 1(α(t) > u)
for 0 ≤ u ≤ 1. Also, for scalar random variable X we let QX(u) ≡ inf{t ≥ 0 : P (|X| >
t) ≤ u} be the reversed quantile function of |X|. First note that

Var(x′i∆θ) = Var

(
p∑

k=1

∆θkxik

)
≤
∑
k,j

Var(xik)
1/2Var(xij)

1/2|∆θk||∆θj|

≤M2

(∑
k

Var(xik)
1/2

)2

≤ pM2

p∑
k=1

Var(xik)

The first inequality is from Cauchy-Schwarz, the second from compactness, and the final
from Jensen’s inequality. Then apparently it suffices to prove that maxi Var(xik)→ 0 as
T →∞ for each k. Thus, in what follows we assume that xit is a scalar random variable.
Corollary 1.1 of Rio (2017) gives the bound

Var(xi) ≤
4

T 2

∑
t≥0

∫ 1

0

α−1(u)Q2
xit

(u)du (B.1)

We claim that for any random variable x ∈ L1, the inequality Qx(u) ≤ |Ex|+Qx−Ex(u)
holds. Note that for t ≥ 0,

P(|x− Ex| > t) ≤ u =⇒ P(|x| > t+ |Ex|) ≤ P(||x| − |Ex|| > t) ≤ P(|x− Ex| > t) ≤ u

by the reverse triangle inequality. Then we have shown that

{t+ |Ex| : t ≥ 0,P(|x− Ex| > t) ≤ u} ⊂ {t ≥ 0 : P(|x| > t) ≤ u}
=⇒ inf{t ≥ 0 : P(|x| > t) ≤ u} ≤ |Ex|+ inf{t ≥ 0 : P(|x− Ex| > t) ≤ u}
⇐⇒ Qx(u) ≤ |Ex|+Qx−Ex(u) ≤ E|x|+Qx−Ex(u)

In what follows, denote zit = xit − E(xit). Then using this inequality in B.1, we get the
bound

T 2Var(xi) ≤
T∑
t=1

E|xit|2
∫ 1

0

α−1(u)du+ 2
T∑
t=1

E|xit|
∫ 1

0

α−1(u)Qzit(u)du

+
T∑
t=0

∫ 1

0

α−1(u)Qzit(u)2du (B.2)

where we applied Jensen’s inequality to reduce (E|x|)2 ≤ E|x|2. For the first term, note
that

∫ 1

0
α−1(u)du =

∑
s≥0

∫ 1

0
1(α(s) ≥ u)du =

∑
s≥0 α(s). For the second term, we need

a bound on the function Qzit(u) for each i, t. Note that from assumption C.3.(d), we have
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P(|xit − Exit| > t) ≤ e1−(t/f)d2 , giving

sup
i,t
Qzit(u) = sup

i,t
inf{t ≥ 0 : P(|xit − Exit| > t) ≤ u} ≤ inf{t ≥ 0 : e1−(t/f)d2 ≤ u}

= f(1− log(u))1/d2

where the last line is just the inverse of the tail bound. We claim that for all a > 1
and u ∈ (0, 1], we have 1 − log(u) ≤ au−1/a. Note that 1 − log(1) = 1 ≤ a(1)−1/a = a.
Moreover, for all u ∈ (0, 1], − ∂

∂u
(1 − log u) = 1/u ≤ u−1/a−1 = − ∂

∂u
au−1/a. This proves

the claim. Let a > 2/d2 ∨ 1, then our work shows (1 − log(u))2/d2 ≤ 1
u1−ε(d2)

, for some
ε(d2) ∈ (0, 1)∫ 1

0

α−1(u)Qzit(u)2du =
∑
s≥0

∫ α(s)

0

Qzit(u)2 ≤
∑
s≥0

∫ α(s)

0

f 2a(d2)2u−1+ε(d2)du

≤ c(f, d2)
∑
s≥0

α(s)ε(d2)du ≤ c(f, d2)
∑
s≥0

e−bε(d2)sd1

≡ K(b, f, d1, d2) <∞

where the final sum can easily be shown to converge by standard methods. More-
over, since d2 is arbitrary, writing (1 − log(u))1/d2 = (1 − log(u))2/d̃2 , the same proof
shows that

∫ 1

0
α−1(u)Qzit(u)du < K ′(b, f, d1, d2). Our work showed that

∑
s≥0 α(s)ε =

K(b, f, d1, d2) < ∞ for some ε ∈ (0, 1). Then apparently
∑

s≥0 α(s) ≤ K ′′(b, f, d1, d2) <
∞ for some different constant K ′′, because the sequence spaces `p are nested and increas-
ing in p > 0.

The work above in equation C.9 shows that supi
1
T

∑
tE|xit|p = O(1) for p = 1, 2. Then

the decomposition in B.2 above becomes

Var(xi) ≤
1

T 2
O(T )O(1) +

2

T 2

(
T∑
t=1

E|xit|2
)1/2( T∑

t=0

(∫ 1

0

α−1(u)Qzit(u)du

)2
)1/2

+
1

T 2

T∑
t=0

K(b, f, d1, d2)

= O(1/T ) + 2

(
1

T

T∑
t=1

E|xit|2
)1/2(

1

T 3

T∑
t=0

K ′′(b, f, d1, d2)2

)1/2

= O(1/T ) +O(1)O(1/T )

where all the order statements above hold uniformly in i. This completes the proof.

B.1 Model Selection Lemmas

The following lemma gives conditions under which the sample risk deviation from the
irreducible sample risk Q̂(θ̂, γ̂)− Q̂0 converges at the rate needed for theorem 3.10.

Lemma B.2. Suppose that (θ̂, γ̂) ∈ Θk0 × Γk0 has rate θ̂ − θ0 = Op(rNT ) and satisfies
ĉi = ĉi(θ̂) for all i (as defined in lemma A.3). Also, suppose there exists a neighborhood
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N of θ0 such that

sup
θ∈N

1

N

N∑
i=1

1(ĉi(θ) 6= c0
i ) = op(T

−a) (B.3)

for any a > 0. Then Q̂(θ̂, γ̂) = Op(
rNT√
NT

) +Op(r
2
NT ) + op(T

−a).

Proof. In what follows, denote ∆θ̂(c) = (θ0(c)− θ̂(c)) and ∆θ̂(c, c′) = (θ0(c)− θ̂(c′)). By
definition, we have

Q̂(θ̂, γ̂)− Q̂0 =
1

NT

∑
i,t

eitx
′
it∆θ̂(c

0
i , ĉi) +

1

NT

∑
i,t

(x′it∆θ̂(c
0
i , ĉi))

2 (B.4)

We consider each term separately. The first term is

1

NT

∑
i,t

eitx
′
it∆θ̂(c

0
i , ĉi) =

1

NT

∑
i,t

eitx
′
it∆θ̂(c

0
i )1(ĉi = c0

i ) +
1

NT

∑
i,t

eitx
′
it∆θ̂(c

0
i , ĉi)1(ĉi 6= c0

i )

=
1

NT

∑
i,t

eitx
′
it∆θ̂(c

0
i )1(ĉi = c0

i ) +
1

NT

∑
i,t

eitx
′
it∆θ̂(c

0
i , ĉi)1(ĉi 6= c0

i )

− 1

NT

∑
i,t

eitx
′
it∆θ̂(c

0
i )(1− 1(ĉi = c0

i ))

=
1

NT

∑
i,t

eitx
′
it∆θ̂(c

0
i ) +

1

NT

∑
i,t

eitx
′
it(∆θ̂(c

0
i , ĉi)−∆θ̂(c0

i ))1(ĉi 6= c0
i )

Consider the first term in the final line. This can be written

1

NT

∑
i,t

eitx
′
it∆θ̂(c

0
i ) =

∑
c∈Ck0

1

NT

∑
i,t

eitx
′
it∆θ̂(c)1(c0

i = c)

=
∑
c∈Ck0

∆θ̂(c)′

(
1

NT

∑
i,t

eitxit1(c0
i = c)

)
=
∑
c∈Ck0

Op(rNT )′Op(1/
√
NT ) = Op(

rNT√
NT

)

where we used assumption 3.9.(a) in the final line. Using Cauchy-Schwarz and recalling
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M = Diam(Θ), the second term can be written

1

NT

∑
i,t

eitx
′
it(∆θ̂(c

0
i , ĉi)−∆θ̂(c0

i ))1(ĉi 6= c0
i )

≤ 1

NT

(∑
i

‖θ̂(c0
i )− θ̂(ĉi)‖21(ĉi 6= c0

i )

)1/2
∑

i

∥∥∥∥∥∑
t

eitxit

∥∥∥∥∥
2
1/2

≤M2

(
1

N

∑
i

1(ĉi 6= c0
i )

)1/2(
1

NT 2

∑
i,t,s

eiteisx
′
itxis

)1/2

≤ op(1)

(
1

N

∑
i

1(ĉi(θ̂) 6= c0
i )

)1/2

(1(θ̂ ∈ N ) + 1(θ̂ 6∈ N ))

≤ op(1)

(
sup
θ∈N

1

N

∑
i

1(ĉi(θ) 6= c0
i )

)1/2

+ op(1)1(θ̂ 6∈ N )

≤ op(1)op(T
−a) + op(1)op(T

−a) = op(T
−a)

The third inequality uses assumption 3.1, and the fourth uses equation B.3. For the final
inequality, note that by consistency of θ̂, the indicator 1(θ̂ 6∈ N ) converges in probability
to 0 at arbitrary rate. We deal with the second term in equation B.4 similarly. Note that

1

NT

∑
i,t

(x′it∆θ̂(c
0
i , ĉi))

2 =
1

NT

∑
i,t

(x′it∆θ̂(c
0
i ))

21(ĉi = c0
i ) +

1

NT

∑
i,t

(x′it∆θ̂(c
0
i , ĉi))

21(ĉi 6= c0
i )

=
1

NT

∑
i,t

(x′it∆θ̂(c
0
i ))

2

+
1

NT

∑
i,t

((x′it∆θ̂(c
0
i , ĉi))

2 − (x′it∆θ̂(c
0
i ))

2)(1(ĉi 6= c0
i ))

Again, we argue the first term above is∑
c∈Ck0

1

NT

∑
i,t

(x′it∆θ̂(c))
2 ≤

∑
c∈Ck0

‖∆θ̂(c)‖2 1

NT

∑
i,t

‖xit‖2 = Op(r
2
NT )Op(1)

where we have used the tail assumption 3.4.(d) and ∆θ̂(c) = Op(1/
√
NT ) for all c in the

final equality. Now, for instance, we can break the second term into parts and compute

1

NT

∑
i,t

(x′it∆θ̂(c
0
i ))

21(ĉi 6= c0
i ) ≤

1

NT

∑
i,t

‖xit‖2‖∆θ̂(c0
i )‖21(ĉi 6= c0

i )

≤M2

(
1

N

∑
i

1(ĉi 6= c0
i )

)1/2(
1

NT 2

∑
i

∑
t,s

‖xit‖2‖xis‖2

)1/2

≤ Op(1)

(
1

N

∑
i

1(ĉi(θ̂) 6= c0
i )

)1/2

≤ Op(1)op(T
−a)

In the final line we have used assumption 3.4.(a) as well as our analysis of the sum
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of indicator functions above. An identical proof shows that 1
NT

∑
i,t((x

′
it∆θ̂(c

0
i , ĉi))

2 =
op(T

−a). Putting this all together gives the claimed result.

The following lemma is needed to establish rates of convergence for strongly mixing
sequences.

Lemma B.3. Impose the mixing and tail assumptions in 3.4.(c) and 3.4.(d), and suppose
also that logN = o(T ε) for some ε with d/2 > ε > 0. Then

sup
i∈[N ]

∥∥∥∥∥ 1

T

∑
t=1

(xitx
′
it − E[xitx

′
it])

∥∥∥∥∥
2,2

= op(T
− 1

2
+ε)

sup
i∈[N ]

∥∥∥∥∥ 1

T

∑
t=1

eitxit

∥∥∥∥∥ = op(T
− 1

2
+ε)

where the first line uses the standard operator norm.

Proof. For (zt)t≥0 a mean zero-process satisfying the assumptions in 3.4.(d) and 3.4.(c),
let s(z)2 = suptEz

2
t + 2

∑
s>t |Eztzs| < ∞. Let d ≡ d1d2

d1+d2
. Then setting λ = Tz

4
in

equation (1.7) in Merlevede et al. (2011), for any r ≥ 1 we have

P

(
1

T

∣∣∣∣∣∑
t

zt

∣∣∣∣∣ > z

)
≤ 4

(
1 +

Tz2

16rs(z)2

)−r/2
+

16C

z
exp

(
−b (Tz)d

(4fr)d

)
Where C is a constant only depending on the mixing and tail parameters b, f, d1, d2. In
particular, plugging in z = xT−

1
2

+ε and r = T ε gives

P

(
1

T
1
2

+ε

∣∣∣∣∣∑
t

zt

∣∣∣∣∣ > x

)
≤ 4

(
1 +

T εx2

16s(z)2

)−T ε/2
+

16CT
1
2
−ε

x
exp

(
−bT

d/2xd

(4f)d

)
≡ f(T, x, s(z))

Let v ≡ supi,q s((eitxitq)t). Then, for instance, applying this to the second expression
above we get for any x > 0

P

(
T

1
2
−ε sup

i∈[N ]

∥∥∥∥∥ 1

T

∑
t=1

eitxit

∥∥∥∥∥ > x

)
≤ P

(
T

1
2
−ε sup

i∈[N ]

∥∥∥∥∥ 1

T

∑
t=1

eitxit

∥∥∥∥∥
1

> x

)

≤ Np sup
q∈[p]

sup
i∈[N ]

P

(
1

T
1
2

+ε

∣∣∣∣∣∑
t

eitxitq

∣∣∣∣∣ > x/p

)
. Nf(T, x/p, v)→ 0

as N, T → ∞ if logN = o(T ε∧(d/2)) and supi,q s((eitxitq)t)) < ∞. Note that covariance
inequalities from Rio (2017) can be used to show that

sup
i

sup
1≤a≤p

s((eitxita)t)) <∞ and sup
i

sup
1≤a,b≤p

s((xitaxitb − E[xitaxitb])t) <∞

under the assumptions 3.4.(d) and 3.4.(c) in our setting, as noted in BM. This completes
the proof for the second term. For the first term, note that by equivalence of finite-
dimensional vector space norms, there is a constant c(p) depending only on the dimension
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such that ∥∥∥∥∥ 1

T

∑
t=1

(xitx
′
it − E[xitx

′
it])

∥∥∥∥∥
2,2

≤ c(p)

∥∥∥∥∥ 1

T

∑
t=1

(xitx
′
it − E[xitx

′
it])

∥∥∥∥∥
1

where ‖A‖1 ≡
∑

i,j |aij| for a matrix A ∈ Rp×p. The first statement of the lemma then
follows by exactly the same argument, substituting xitx′it − E[xitx

′
it] for eitxit.

Corollary B.4. The following rates hold

1

N

∑
i=1

∥∥∥∥∥ 1

T

∑
t=1

(xitx
′
it − E[xitx

′
it])

∥∥∥∥∥ = op(T
− 1

2
+ε)

1

N

∑
i=1

∥∥∥∥∥ 1

T

∑
t=1

eitxit

∥∥∥∥∥ = op(T
− 1

2
+ε)

Proof. Immediate by lemma B.3, noting that for any positive real numbers (ai)
N
i=1 we

have 1
N

∑
i ai ≤ supi∈[N ] ai.

C Extensions and Supplementary Material

C.1 Fixed Effects Model

In this section, we consider an extension of the main specification with individual fixed
effects.

yit = x′itθ(c
0
i ) + ai + eit (C.1)

We propose to estimate equation C.1 by (1) de-meaning the time series for each cross-
sectional unit followed by (2) applying Lloyd’s Algorithm to the de-meaned data. In
other words, defining z̃it ≡ zit − 1

T

∑
t zit = zit − zi for any variable zit, we apply Lloyd’s

algorithm to the model ỹit = x̃′itθ(c
0
i ) + ẽit.

The main challenge in extending our results to this setting is that the differencing op-
eration changes the autocorrelation structure of the data, so that the mixing conditions
in assumption 3.4.(c) may no longer be satisfied. In the remainder of this section, we
overload notation and let θ̂ and γ̂ refer to the fixed effects estimates defined by

(θ̂, γ̂) = argmin
γ∈Γ,θ∈Θ

1

NT

N∑
i=1

T∑
t=1

(ỹit − x̃′itθ(ci))2 (C.2)

Letting the cluster permutation σ` be defined analagously to equation 3.1 in the main
text, we have

Lemma C.1. Under the assumptions in 3.1 with (xit, eit) replaced by (x̃it, ẽit), P(σ` invertible)→
1 as N, T →∞

Relabeling θ̂`σ(a) → θ̂`a (which is well-defined w.h.p. as N, T → ∞ by the lemma), we
have
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Theorem C.2. Under the assumptions in 3.1 with (xit, eit) replaced by (x̃it, ẽit), for all
blocks ` and a ∈ [k`], we have ‖θ0

`a − θ̂`a‖ = oP (1) as N, T →∞.

Proof. Immediate from lemma 3.2 and theorem 3.3 applied to the the de-meaned data
(ỹ, x̃, ẽ)it.

For the analogue of theorem 3.5, we modify assumption 3.4 to the following

Assumption C.3. Consider the following assumptions

(a) maxi
1
T 2

∑
t,sE(‖xit‖2‖xis‖2) = O(1) as T →∞

(b) Let 3.4.(b) hold with (e, x)it replaced by (ẽ, x̃)it Also, let assumptions 3.4.(c) and
3.4.(f) on mixing conditions of xiteit, and large deviations of

∑
t ‖xit‖2 hold exactly

as in assumption 3.4 from the main theorem

(c) The uniform limits maxi∈[N ]
1
T

∑
tE[eitxit] → 0 and mini∈[N ]

1
T

∑
t E(x̃′it(θ(c) −

θ(c′)))2 → d̃(c, c′) hold as T →∞, and d̃(c, c′) ≥ d̃min > 0 for c 6= c′.

(d) There exist constants f and d2 such that for all i ∈ [N ] and all z > 0, for all
components xjit, x

j′

it of the vector xit we have P(|xjitx
j′

it − E(xjitx
j′

it)| > z), P(|eitxjit −
Eeitx

j
it| > z) and P(|xjit − Ex

j
it| > z) are bounded above by e1−(z/f)d2

(e) The covariate vector xit contains a constant

Then, analogously letting θ̃ be the infeasible estimator that minimizes C.2 with the true
cluster identities c0

i plugged in, we have

Theorem C.4. Let the assumptions needed for consistency (assumption 3.1) hold with
(x, e)it replaced by (x̃, ẽ)it, and let the assumptions in C.3 hold. Then for any a > 0 and
as N, T →∞, we have the following theorem

θ̂ = θ̃ + oP (T−a) (C.3)

Moreover, individual cluster estimates satisfy

P
(
∃i ∈ [N ] s.t. ĉi 6= c0

i

)
= o(1) + o(NT−a) (C.4)

The analogue of theorem 3.8 follows immediately from theorem C.4 by replacing yit, xit
and eit with the appropriate de-meaned variables. Specifically, define

M̂`a,sb =
1

NT

N∑
i=1

T∑
t=1

x̃it`x̃
′
its1(cis = b)1(ci` = a)

v`a =
1

NT

N∑
i=1

T∑
t=1

ẽit1(ci` = a)x̃it`

and let

1

NT

N∑
i,j=1

T∑
t,t′=1

E[(eit − ei)(ejt′ − ej)1(c0
i` = a)1(c0

js = b)(xit` − xi`)(xjt′s − xjs)′]→ Ω`a,sb

as N, T goes to infinity (we assume the limit exists), then the analogue of 3.8 is
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Theorem C.5. Suppose that the assumptions in 3.7 are satisfied with (x, e)it replaced
by (x̃, ẽ)it and the matrices M̂ and Ω as defined above. Also let there r > 0 such that√
NT−r = o(1). Then

√
NT (vec(θ̂ − θ0))

d→ N (0,M−1ΩM) (C.5)

We propose to use the HAC estimator defined in equation 3.11, with êit replaced by the
residuals from the fixed effects problem C.2.

Proof of Theorem C.4. Following the same arguments as in the proof of theorem 3.5,
equation A.6 becomes

max
i

P

(
1

T

T∑
t=1

[x̃′it(θ
0(c′)− θ0(c))]2 ≤ 4ηMK + (4η + 2M)η

)

+ max
i

P

(
1

T

∑
t

‖x̃it‖2 > M ′

)
+ max

i
P

(∥∥∥∥∥ 1

T

T∑
t=1

ẽitx̃it

∥∥∥∥∥ > η

)
(C.6)

where we have replacedM ′ with an arbitrary positive constantK, to be determined below.
For the second term, note that by assumption 3.4.(f), we have maxi P(

∑
t ‖xit‖2 > M ′) =

o(T−a) for each a > 0. Note that for any C > 0, since z ≤ z2 + 1 on R≥0

P

(
1

T

∑
t

‖xit‖ > C

)
≤ P

(
1

T

∑
t

(‖xit‖2 + 1) > C

)
≤ P

(
1

T

∑
t

‖xit‖2 > C − 1

)

Also note that ‖xit−xi‖2 ≤ 2(‖xit‖2 +‖xi‖2), and P(‖xi‖2 > C1) ≤ P( 1
T

∑
t ‖xit‖ > C

1/2
1 )

by Cauchy-Schwarz. Putting this all together, we find that

P

(
1

T

∑
t

‖xit − xi‖2 > K

)
≤ P

(
1

T

∑
t

‖xit‖2 > K/4

)
+ P

(
‖xi‖2 > K/4

)
≤ P

(
1

T

∑
t

‖xit‖2 > K/4

)
+ P

(
1

T

∑
t

‖xit‖2 >
√
K/2− 1

)
= o(T−a)

The first inequality follows from ‖a+ b‖2 ≤ 2(‖a‖2 +‖b‖2) and a union bound. Moreover,
the o(T−a) statement holds uniformly over i as long as K ≥ 4(M ′ + 1)2, where M ′ is as
in the uniform large deviations bound on ‖xit‖2 in assumption 3.4.(f).

For the third term, note that 1
T

∑
t ẽitx̃it = 1

T

∑
t(eit − ei)(xit − xi) = 1

T

∑
t eitxit − eixi.

The term 1
T

∑
t eitxit is uniformly op(T−a) for any a > 0 by assumption C.3.(b), as shown

in the proof of 3.5. For c > 0, the second term eixi has

P(‖eixi‖ > c) ≤ P(‖xi‖ > M ′ + 1) + P
(
|ei| >

c

M ′ + 1

)
≤ P(

1

T

∑
t

‖xit‖2 > M ′) + P
(
|ei| >

c

M ′ + 1

)
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The first term is uniformly o(T−a) (in the sense of equation A.6) by assumption, and the
second term is uniformly o(T−a) by the same type of argument in the main proof using
assumptions C.3.(e), 3.4.(d), and 3.4.(e) to invoke lemma A.4 on tail bounds for strongly
mixing processes.

Let K = 4(M ′ + 1)2 and η such that 4ηMK + (4η + 2M)η < d̃min/2. With git =

E((x′it(θ
0(c)− θ0(c′)))2) and T ′ such that 1

T ′

∑T ′

t=1 git ≥
1
3
d̃min. Then for T > T ′, the first

term is

P

(
1

T

∑
t

(
[x̃′it(θ

0(c′)− θ0(c))]2 − git
)
≤ (1/3)d̃min −

1

T

∑
t

git

)

≤ P

(∣∣∣∣∣ 1

T

∑
t

[x̃′it(θ
0(c′)− θ0(c))]2 − git

∣∣∣∣∣ ≥ 1

6
d̃min

)

Setting ∆θ ≡ θ0(c′)− θ0(c), we can expand each term in the sum on the left hand side as

[x̃′it(θ
0(c′)− θ0(c))]2 − git = ((x̃′it∆θ)

2 − E(x̃′it∆θ)
2) = (x′it∆θ)

2 − E(x′it∆θ)
2

− 2(x′i∆θ∆θ
′xit − Ex′i∆θ∆θ′xit) + ((x′i∆θ)

2 − E(x′i∆θ)
2)

≡ B1
iT +B2

iT + ((x′i∆θ)
2 − E(x′i∆θ)

2)

Fix C > 0. The first term has P( 1
T

∑
t(x
′
it∆θ)

2 − E(x′it∆θ)
2 > C) = o(T−a) uniformly

over i by applying lemma A.4 exactly as in the proof of the main theorem. For the second
term, note that 1

T

∑
t(x
′
i∆θ∆θ

′xit − 1
T

∑
tEx

′
i∆θ∆θ

′xit) = (xi − Exi)′∆θ∆θ′xi, and

|(xi − Exi)′∆θ∆θ′xi| ≤ ‖(xi − Exi)‖‖∆θ∆θ′xi‖ ≤ ‖(xi − Exi)‖‖∆θ‖2‖xi‖

Then we have

P(‖(xi − Exi)‖‖∆θ‖2‖xi‖ > C) (C.7)

≤ P(‖∆θ‖2‖xi‖ > M2(M ′ + 1)) + P
(
‖(xi − Exi)‖ >

C

M2(M ′ + 1)

)
≤ P(

1

T

∑
t

‖xit‖2 > M ′) + P
(
‖(xi − Exi)‖ >

C

M2(M ′ + 1)

)
= o(T−a) (C.8)

uniformly in i, where the second inequality follows by assumption 3.1.(a) and the same
algebra used above to bound ‖xi‖ in probability using assumption 3.4.(f). That the final
term is uniformly o(T−a) follows by lemma A.4, using the tail conditions and strong
mixing assumed in C.3.(b). The final term above is

(x′i∆θ)
2 − E(xi∆θ)

2 = (x′i∆θ)
2 − Var(x′i∆θ)− (Ex′i∆θ)

2

= −Var(x′i∆θ) + (x′i∆θ − E(xi∆θ))(x
′
i∆θ + E(x′i∆θ))

Note that |E(x′i∆θ)| ≤ME‖xi‖ ≤ME 1
T

∑
t ‖xit‖ ≤ME 1

T

∑
t ‖xit‖2 by Cauchy-Schwarz,

compactness of Θ, and monotonicity of Lp norms, respectively. LetEiT = 1( 1
T

∑
t ‖xit‖2 >
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M ′), then

sup
i
E

(
1

T

∑
t

‖xit‖2

)
≤ sup

i
E

(
1(Eit)

1

T

∑
t

‖xit‖2

)
+M ′

≤M ′ + sup
i

P(EiT )1/2

(
1

T 2

∑
t,s

E‖xit‖2‖xis‖2

)1/2

= M ′ + o(T−a)O(1) = O(1) (C.9)

where the second inequality uses Cauchy-Schwarz, and the last line uses assumptions
3.4.(f) and C.3.(a). Noting that x′i∆θ − E(x′i∆θ = op(T

−a) by mixing and tail as-
sumptions on xit, compactness, and lemma A.4, the product term can now be shown
to have P[(x′i∆θ − E(xi∆θ))(x

′
i∆θ + E(x′i∆θ) > C] = o(T−a) using the same type of

argument as in equation C.8. Lemma B.1 in the supplemental appendix shows that
maxi Var(x′i∆θ) = O(1/T ) under our assumptions. In particular, we can choose T ′′ such
that maxi Var(x′i∆θ) < (d̃min/12) for all T > T ′′.

Finally, define B3
iT = (x′i∆θ − E(xi∆θ))(x

′
i∆θ + E(x′i∆θ) and Bk

T ≡ 1
T

∑
tB

k
iT . Then for

T > max(T ′, T ′′), for all i we have

P

(∣∣∣∣∣ 1

T

∑
t

[x̃′it(θ
0(c′)− θ0(c))]2 − git

∣∣∣∣∣ ≥ 1

6
d̃min

)
≤ P

(
B1
T +B2

T +BT
3 + Var(x′i∆θ) ≥

1

6
d̃min

)

≤ P
(
B1
T +B2

T +BT
3 + ≥ 1

12
d̃min

)
≤

3∑
k=1

P
(
Bk
T >

1

36
d̃min

)
= o(T−a)

The first inequality follows from the triangle inequality, the second from T > T ′′ and the
final inequality from a union bound. The o(T−a) holds uniformly in i by the arguments
above. This complets the proof that equation C.6 is o(T−a) for any a > 0.

One final issue is the use of assumption 3.4.(a) in equation A.9. For the fixed effects
case, we replaced this assumption with assumption C.3.(a); however, one can show that
1
T 2

∑
t,s ‖x̃it‖2‖x̃is‖2 ≤ 16

T 2

∑
t,s ‖xit‖2‖xis‖2, so that maxi

1
T 2

∑
t,sE(‖x̃it‖2‖x̃is‖2) = O(1).

Then 1
NT 2

∑
i

∑
t,s ‖x̃it‖2‖x̃is‖2 = OP (1) by the Markov inequality. The remainder of the

proof follows exactly as in the proof of theorem 3.5, substituting (x̃, ẽ)it for (x, e)it.

C.2 Computation

As described in section 2, to solve problem 2.1 we primarily rely on Lloyd’s algorithm,
which performs coordinate descent on Θ× Γ. It is well known that this problem may be
nonconvex, so in general coordinate descent will only yield a local minimum. To mitigate
this issue, we rely on multiple random initializations. In our simulations we choose initial
θ ∼ N (0, σ2I) and each ci` ∼ Unif([k`]) independently.

Convergence Over Initializations - In this section, we give some evidence on the
convergence of our algorithm for different data-generating processes. Given 1 ≤ v ≤ S
random initializations, let (θ̂v, γ̂v) be the estimator achieved on the vth initialization.
Define Q̂opt

s ≡ min1≤v≤s Q̂(θ̂v, γ̂v) and θ̂opts to be the estimator that achieves Q̂opt
s (out of
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the first s initializations). Define the mean relative errors

rQ(s) = E

[
Q̂opt
s − Q̂

opt
S

Q̂opt
S

]
rθ(s) = E

[
‖θ̂opts − θ̂

opt
S ‖

‖θ̂optS ‖

]
(C.10)

where each expectation is taken over the joint distribution of (xit, yit) and the sequence
of random initializations (θ, γ)inits . Monte Carlo approximations of the paths rQ(s) and
rθ(s) for DGP’s mirroring those used in section 5 are shown in figures 1, 2, and 3. Note
in particular that “angle” refers to a measure of cluster separation, as in the simulation
design in section 5. In table 7, we show the number of initializations required to achieve
0.1% relative error for each DGP. Each simulation reports results up to S = 200, calcu-
lated using 200 independent sample paths.

The results show that problem 2.1 becomes significantly easier as (N, T ) increases. Prob-
lems with fewer, well-separated clusters also converge more quickly to a stable solution
(specifically, no improvements with additional random initializations up to S). In particu-
lar, rQ(50) ≤ 0.01% for all DGP’s. Thus, we use S = 50 for our Monte Carlo simulations,
reported in section 5. There is a large literature in computer science on heuristics for the
least-squares partitioning problem, as well as some recent work on exact methods. See
BM Appendix S1 and the references therein for more details.

Algorithm Hyperparameters - The hyperparameters for our implementation are given
by (S, tol, itermax), where (tol, itermax) define a stopping rule for coordinate descent.
With j denoting the number of update cycles ((2) and (3) in our algorithm), we stop
if either j > itermax or ‖θ̂j − θ̂j−1‖ < tol. We use tol = 1 · 10−8 and itermax = 400.
We found solutions to be very insensitive to both hyperparameters for tol > 1 · 10−6 and
itermax > 100. We use S = 50, as described above.
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D Tables and Figures

Table 1: Effect of Cluster Separation

Coverage Bootstrap Coverage Param. MSE Cluster Loss
Angle (α) AR(1) HK AR(1) HK AR(1) HK AR(1) HK

1.57 0.90 0.89 0.88 0.87 0.047 0.053 0.044 0.050
1.26 0.86 0.84 0.83 0.81 0.055 0.061 0.074 0.083
0.94 0.75 0.72 0.73 0.69 0.059 0.067 0.13 0.14
0.63 0.53 0.50 0.51 0.49 0.058 0.064 0.22 0.23
0.31 0.25 0.25 0.24 0.24 0.052 0.059 0.37 0.38
0.16 0.20 0.19 0.20 0.19 0.048 0.054 0.44 0.44

Notes: N=150, T=10

Table 2: Effect of Sample Size (N, T)

Param. MSE Coverage (Analytical) Cluster Loss

Errors T N=50 100 150 200 250 50 100 150 200 250 50 100 150 200 250

5 0.154 0.140 0.137 0.134 0.133 0.761 0.763 0.772 0.768 0.756 0.134 0.125 0.125 0.123 0.123
AR(1) 10 0.051 0.047 0.047 0.046 0.046 0.873 0.889 0.898 0.899 0.901 0.046 0.044 0.044 0.044 0.044

15 0.021 0.019 0.018 0.018 0.018 0.909 0.927 0.939 0.927 0.926 0.018 0.017 0.017 0.017 0.017
20 0.009 0.008 0.008 0.008 0.007 0.916 0.939 0.935 0.935 0.935 0.007 0.007 0.007 0.007 0.007
25 0.005 0.004 0.004 0.004 0.003 0.930 0.937 0.936 0.941 0.943 0.003 0.003 0.003 0.003 0.003

5 0.160 0.146 0.144 0.143 0.140 0.718 0.748 0.738 0.738 0.736 0.137 0.130 0.130 0.130 0.128
HK 10 0.059 0.055 0.053 0.052 0.051 0.856 0.875 0.886 0.888 0.887 0.053 0.051 0.050 0.049 0.049

15 0.027 0.024 0.023 0.023 0.022 0.905 0.914 0.916 0.920 0.917 0.023 0.022 0.021 0.022 0.021
20 0.013 0.011 0.011 0.010 0.010 0.915 0.927 0.930 0.936 0.941 0.010 0.010 0.010 0.009 0.009
25 0.007 0.006 0.005 0.005 0.005 0.924 0.936 0.946 0.946 0.942 0.004 0.004 0.005 0.004 0.004
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Table 3: Effect of Number of Clusters (k1, k2)

# Clusters Coverage Bootstrap Coverage Param. MSE Function MSE Cluster Loss
(k1, k2) AR(1) HK AR(1) HK AR(1) HK AR(1) HK AR(1) HK

(1, 2) 0.90 0.88 0.88 0.86 0.026 0.030 0.026 0.094 0.035 0.040
(2, 2) 0.86 0.83 0.83 0.81 0.054 0.063 0.054 0.184 0.074 0.085
(2, 3) 0.84 0.81 0.82 0.79 0.070 0.078 0.070 0.218 0.090 0.100
(3, 3) 0.81 0.78 0.80 0.76 0.085 0.095 0.085 0.258 0.106 0.119
(3, 4) 0.80 0.76 0.78 0.74 0.099 0.109 0.099 0.281 0.118 0.131
(4, 4) 0.77 0.73 0.76 0.72 0.114 0.123 0.114 0.306 0.132 0.143

Notes: N=150, T=10

Table 4: Effect of Misspecified Blocking of Covariates - Estimation with B0 = 1 and
B = 2

Errors # Clusters Param. MSE Function MSE
(k1, k2) B=1 B=2 B=1 B=2

(1, 2) 0.027 0.026 0.077 0.026
(2, 2) 0.058 0.054 0.157 0.054

AR(1) (2, 3) 0.079 0.070 0.206 0.070
(3, 3) 0.108 0.085 0.273 0.085
(3, 4) 0.137 0.099 0.334 0.099
(4, 4) 0.163 0.114 0.383 0.114

B=1 B=2 B=1 B=2

(1, 2) 0.031 0.030 0.097 0.094
(2, 2) 0.068 0.063 0.200 0.184

HK (2, 3) 0.090 0.078 0.252 0.218
(3, 3) 0.122 0.095 0.335 0.258
(3, 4) 0.149 0.109 0.393 0.281
(4, 4) 0.174 0.123 0.441 0.306

Notes: N=150, T=10

Table 5: Effect of Dimension Imbalance

dim Coverage-large Coverage-small Cluster loss-small Cluster loss-large Param. MSE
(m, p-m) AR(1) HK AR(1) HK AR(1) HK AR(1) HK AR(1) HK

(1, 11) 0.921 0.918 0.599 0.538 0.156 0.170 0.000 0.000 0.009 0.009
(2, 10) 0.930 0.931 0.841 0.840 0.069 0.060 0.001 0.001 0.008 0.007
(3, 9) 0.932 0.931 0.917 0.910 0.029 0.028 0.001 0.001 0.006 0.006
(4, 8) 0.935 0.930 0.922 0.916 0.016 0.019 0.001 0.001 0.005 0.005
(5, 7) 0.931 0.934 0.927 0.934 0.006 0.007 0.003 0.002 0.005 0.005
(6, 6) 0.936 0.938 0.939 0.935 0.003 0.003 0.004 0.004 0.004 0.004

Notes: N=150, T=10
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Table 6: Effect of Growing Model Dimension

dim (p) Coverage Param. MSE Function MSE Cluster Loss
Error indep AR(1) indep AR(1) indep AR(1) indep AR(1)

1 0.93 0.92 0.046 0.078 0.023 0.065 0.011 0.019
2 0.94 0.91 0.047 0.060 0.045 0.077 0.012 0.015
3 0.92 0.93 0.051 0.059 0.067 0.095 0.012 0.014
4 0.91 0.92 0.058 0.063 0.098 0.122 0.014 0.015
5 0.92 0.90 0.064 0.068 0.127 0.150 0.015 0.016

Notes: N=150, T=10

Table 7: Number of Initializations for 0.1% Rel. Error

(N, T) sθ sq Angle sθ sq

(20, 10) 84 9 1 14 0
(50, 10) 65 1 0.8 98 0
(100, 10) 28 0 0.6 56 0
(150, 10) 9 0 0.4 109 2
(250, 10) 7 0 0.2 139 4

0.1 157 5

(N, T) sθ sq K sθ sq

(50, 5) 163 10 3 14 1
(50, 15) 17 0 4 48 0
(50, 20) 9 1 5 153 1
(50, 25) 1 0 6 130 4

7 163 4
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Figure 1: Algorithm Convergence and Cluster Separation

(a) rθ(s) (b) rQ(s)

Figure 2: Algorithm Convergence and (N, T )

(a) rθ(s) (b) rθ(s)

Figure 3: Algorithm Convergence and Number of Clusters k = k1 + k2

(a) rθ(s) (b) rQ(s)
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